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Section 1

5. Introduction to Factorial Designs
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Subsection 1

5.1 Basic Definitions and Principles
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Factorial design

Factorial designs deal with the experiments that involve the study of
two or more factors.

In factorial design, all possible combinations of the levels of the
factors are investigated in each complete replication.

▶ E.g. if there are 𝑎 levels of factor 𝐴 and 𝑏 levels of factor 𝐵, each
replicate contains all 𝑎𝑏 treatment combinations.

The effect of a factor is defined to be the change in response
produced by a change in the level of the factor.

This is frequently called a main effect because it refers to the
primary factors of interest in the experiment.
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Example 5.1

For example, consider the simple experiment in Figure 5.1.

This is a two-factor factorial experiment with both design factors at
two levels. We have called these levels “low” and “high” and denoted
them “−” and “+,” respectively.
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Example 5.1
The main effect of factor 𝐴 in this two-level design can be thought of
as the difference between the average response at the low level of 𝐴
and the average response at the high level of 𝐴. Numerically, this is

𝐴 = 40 + 52
2 − 20 + 30

2 = 21

That is, increasing factor 𝐴 from the low level to the high level causes
an average response increase of 21 units

Similarly, the main effect of 𝐵 is

𝐵 = 30 + 52
2 − 20 + 40

2 = 11

If the factors appear at more than two levels, the above procedure
must be modified because there are other ways to define the effect of
a factor. This point is discussed more completely later.
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Example 5.2

In some experiments, we may find that the difference in response
between the levels of one factor is not the same at all levels of the
other factors.

When this occurs, there is an interaction between the factors. For
example, consider the two-factor factorial experiment shown in Figure
5.2
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Example 5.2

At the low level of factor 𝐵 (or 𝐵−), the 𝐴 effect is

𝐴 = 50 − 20 = 30

At the high level of factor 𝐵 (or 𝐵+), the 𝐴 effect is

𝐴 = 12 − 40 = −28

Because the effect of 𝐴 depends on the level chosen for factor 𝐵, we
see that there is interaction between 𝐴 and 𝐵.

The magnitude of the interaction effect is the average difference in
these two 𝐴 effects, or 𝐴𝐵 = (−28 − 30) ∕ 2 = −29.

Clearly, the interaction is large in this experiment.
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Example 5.2

An interaction is the failure of one factor to produce the same effect
on the response at different levels of another factor.
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Illustrating interaction
These ideas may be illustrated graphically. Figure 5.3 plots the
response data in Figure 5.1 against factor 𝐴 for both levels of factor
𝐵.

▶ Note that the 𝐵− and 𝐵+ lines are approximately parallel, indicating
a lack of interaction between factors 𝐴 and 𝐵.

Similarly, Figure 5.4 plots the response data in Figure 5.2. Here we
see that the 𝐵− and 𝐵+ lines are not parallel.

▶ This indicates an interaction between factors 𝐴 and 𝐵.
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Illustrating interaction

There is another way to illustrate the concept of interaction. Suppose
that both of our design factors are quantitative (such as
temperature, pressure, time).

Then a regression model representation of the two-factor factorial
experiment could be written as

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝜖

▶ where 𝑦 is the response and the variables x1 and x2 are defined on a
coded scale from −1 to +1 (the low and high levels of 𝐴 and 𝐵).
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Illustrating interaction

The parameter estimates in this regression model turn out to be
related to the effect estimates.

For the experiment shown in Figure 5.1 we found the main effects of
A and 𝐵 to be A = 21 and 𝐵 = 11.

The least square estimates of 𝛽1 and 𝛽2are one-half the value of the
corresponding main effect (more on this later)
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Illustrating interaction

̂𝑦 = 35.5 + 10.5𝑥1 + 5.5𝑥2 + 0.5𝑥1𝑥2 ≡ 35.5 + 10.5𝑥1 + 5.5𝑥2
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Illustrating interaction
Now suppose that the interaction contribution to this experiment was
not negligible

Figure 5.6 presents the response surface and contour plot for the
model

̂𝑦 = 35.5 + 10.5𝑥1 + 5.5𝑥2 + 8𝑥1𝑥2

Interaction is a form of curvature in the underlying response
surface model for the experiment
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Subsection 2

5.2 The advantage of factorials
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5.2 The advantage of factorials
Two factors both at two levels: 𝐴+, 𝐴−, 𝐵+, 𝐵−

Two possible designs

Factor A

Fa
ct

or
 B

low high
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w

hi
gh

A−1B−1 A+1B−1

A−1B+1

Figure 1: A one-factor-at-a-time
experiment

Factor A
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A+1B−1A−1B+1

Figure 2: A two-factor factorial
experiment
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5.2 The advantage of factorials
One-factor-at-a-time design

Because experimental error is present, it is desirable to take two
observations, say, at each treatment combination and estimate the
effects of the factors using average responses.

Thus, a total of six observations are required.

Effects of factors 𝐴 and 𝐵 can be obtained, but interaction cannot be
calculated

Two-factor factorial design

Using just four observations, two estimates of the 𝐴 effect can be
made. Similarly, two estimates of the 𝐵 effect can be made.

These two estimates of each main effect could be averaged to
produce average main effects that are just as precise as those from
the single-factor experiment

Main effects of 𝐴 and 𝐵 and their interaction can be calculated
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5.2 The advantage of factorials

Factorial designs are more efficient than one-factor-at-a-time
experiments.

▶ For this example, the relative efficiency of the factorial design to the
one-factor-at-a-time experiment is (6/4) = 1.5.

▶ Generally, this relative efficiency will increase as the number of factors
increases.

A factorial design is necessary when interactions may be present to
avoid misleading conclusions.

Factorial designs allow the effects of a factor to be estimated at
several levels of the other factors, yielding conclusions that are valid
over a range of experimental conditions.
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Subsection 3

5.3 Two-Factor factorial design
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An Example
The simplest types of factorial designs involve only two factors or sets
of treatments.

Factor 𝐴 has 𝑎 levels and factor 𝐵 has 𝑏 levels, so there will be in
total 𝑎𝑏 treatment combinations and each treatment combination is
replicated 𝑛 times

Battery life experiment

An engineer is designing a battery for use in a device that will be subjected
to some extreme variations in temperature. The only design parameter
that he can select at this point is the plate material for the battery, and he
has three possible choices. When the device is manufactured and is
shipped to the field, the engineer has no control over the temperature
extremes that the device will encounter, and he knows from experience
that temperature will probably affect the effective battery life. However,
temperature can be controlled in the product development laboratory for
the purposes of a test.
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An Example

The engineer decides to test all three plate materials at three
temperature levels - 15, 70, and 125°F - because these temperature
levels are consistent with the product end-use environment.

Four batteries are tested at each combination of plate material and
temperature, and all 36 tests are run in random order.

The experiment and the resulting observed battery design experiment
are given below
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An Example

𝐴 → Material type; 𝐵 → Temperature (a quantitative variable)

Important questions:
1 What effects do material type and temperature have on the life of

the battery?
2 Is there a choice of material that would give uniformly long life

regardless of temperature?
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General notations

𝑦𝑖𝑗𝑘 denotes the observed response when factor 𝐴 is at the 𝑖th level
(𝑖 = 1, 2,… , 𝑎) and factor 𝐵 is at the 𝑗th level (𝑗 = 1, 2,… , 𝑏) for
the 𝑘th replicate (𝑘 = 1, 2,… , 𝑛).
The order in which the 𝑎𝑏𝑛 observations are taken is selected at
random so that this design is a completely randomized design.

Data layout
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Modelling data
The observations in a factorial experiment can be described by a
model. There are several ways to write the model for a factorial
experiment.

The means model

𝑦𝑖𝑗𝑘 = 𝜇𝑖𝑗 + 𝜖𝑖𝑗𝑘
⎧{
⎨{⎩

𝑖 = 1,… , 𝑎
𝑗 = 1,… , 𝑏
𝑘 = 1,… , 𝑛

where 𝜇𝑖𝑗 is the mean corresponding to the treatment combination 𝑖th
level of factor 𝐴 and 𝑗th level of factor 𝐵, and 𝜖𝑖𝑗𝑘 is the random
error term.

The treatment model (or effects model)
𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘 (1)

where 𝜇 is the overall mean, 𝜏𝑖 is the effect of the 𝑖th level of factor
𝐴, 𝛽𝑗 is the effect of the 𝑗th level of factor 𝐵, (𝜏𝛽)𝑖𝑗 is the
interaction between 𝜏𝑖 and 𝛽𝑗.
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Modelling data

We could also use a regression model as in Section 5.1 (particularly
useful when one or more of the factors in the experiment are
quantitative).

Throughout most of this chapter we will use the effects model
(Equation 1) with an illustration of the regression model in Section
5.5.
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Modelling data
In the two-factor factorial, both row and column factors (or
treatments), 𝐴 and 𝐵, are of equal interest.

Specifically, we are interested in testing hypotheses about the equality
of row treatment effects, say

𝐻0 ∶ 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑎 = 0
𝐻1 ∶ at least one 𝜏𝑖 ≠ 0

and the equality of column treatment effects, say
𝐻0 ∶ 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑏 = 0
𝐻1 ∶ at least one 𝛽𝑗 ≠ 0

We are also interested in determining whether row and column
treatments interact:

𝐻0 ∶ (𝜏𝛽)𝑖𝑗 = 0 for all 𝑖, 𝑗
𝐻1 ∶ at least one (𝜏𝛽)𝑖𝑗 ≠ 0
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Subsection 4

Statistical analysis of the fixed effects model
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Notations

𝑦𝑖⋅⋅ =
𝑏

∑
𝑗=1

𝑛
∑
𝑘=1

𝑦𝑖𝑗𝑘 ̄𝑦𝑖⋅⋅ =
𝑦𝑖⋅⋅
𝑏𝑛 𝑖 = 1,… , 𝑎

𝑦⋅𝑗⋅ =
𝑎

∑
𝑖=1

𝑛
∑
𝑘=1

𝑦𝑖𝑗𝑘 ̄𝑦⋅𝑗⋅ =
𝑦⋅𝑗⋅
𝑎𝑛 𝑗 = 1,… , 𝑏

𝑦𝑖𝑗⋅ =
𝑛

∑
𝑘=1

𝑦𝑖𝑗𝑘 ̄𝑦𝑖𝑗⋅ =
𝑦𝑖𝑗⋅
𝑛

𝑖 = 1,… , 𝑎
𝑗 = 1,… , 𝑏

𝑦⋅⋅⋅ =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

𝑦𝑖𝑗𝑘 ̄𝑦⋅⋅⋅ =
𝑦⋅⋅⋅
𝑎𝑏𝑛
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Decomposing total variation
Total corrected sum of squares can be expressed as

𝑆𝑆𝑇 = ∑
𝑖,𝑗,𝑘

(𝑦𝑖𝑗𝑘 − ̄𝑦⋅⋅⋅)2 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴𝐵 + 𝑆𝑆𝐸, (2)

where

𝑆𝑆𝐴 = 𝑏𝑛∑
𝑖
( ̄𝑦𝑖⋅⋅ − ̄𝑦⋅⋅⋅)2 𝑆𝑆𝐵 = 𝑎𝑛∑

𝑗
( ̄𝑦⋅𝑗⋅ − ̄𝑦⋅⋅⋅)2

𝑆𝑆𝐴𝐵 = 𝑛∑
𝑖,𝑗

( ̄𝑦𝑖𝑗⋅ − ̄𝑦𝑖⋅⋅ − ̄𝑦⋅𝑗⋅ + ̄𝑦⋅⋅⋅)2

𝑆𝑆𝐸 = ∑
𝑖,𝑗,𝑘

(𝑦𝑖𝑗𝑘 − ̄𝑦𝑖𝑗⋅)2

Equation 2 is the fundamental ANOVA equation for the two-factor
factorial
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Decomposing total variation

The number of degrees of freedom associated with each sum of squares

Effect Degrees of freedom
𝐴 𝑎 − 1
𝐵 𝑏 − 1
𝐴𝐵 (𝑎 − 1)(𝑏 − 1)
Error 𝑎𝑏(𝑛 − 1)
Total 𝑎𝑏𝑛 − 1

Each sum of squares divided by its degrees of freedom is a mean
square, e.g.

𝑀𝑆𝐴 = 𝑆𝑆𝐴
𝑎 − 1
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Expected value of the mean squares

Under the null hypotheses of no treatment effects and no interaction,
the 𝑀𝑆𝐴,𝑀𝑆𝐵, 𝑀𝑆𝐴𝐵, 𝑀𝑆𝐸 all estimate 𝜎2. If there is significant
treatment effect then corresponding mean squares will be larger than
𝑀𝑆𝐸
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Cochran’s theorem

Cochran’s theorem
Let 𝑍𝑖 be NID(0, 1) for 𝑖 = 1, 2,… , 𝜈 and

𝜈
∑
𝑖=1

𝑍2
𝑖 = 𝑄1 +𝑄2 +⋯+𝑄𝑠

where 𝑠 ≤ 𝑣, and 𝑄𝑖 has 𝑣𝑖 degrees of freedom (𝑖 = 1, 2,… , 𝑠). Then
𝑄1, 𝑄2,… ,𝑄𝑠 are independent chi-square random variables with
𝑣1, 𝑣2,… , 𝑣𝑠 degrees of freedom, respectively, if and only if

𝜈 = 𝜈1 + 𝜈2 +⋯+ 𝜈𝑠
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Distributions of sum of squares

For the observed response 𝑦𝑖𝑗𝑘, 𝑖 = 1,… , 𝑎, 𝑗 = 1,… , 𝑏, and 𝑘 = 1,… , 𝑛,
we can decompose the total sum of squares as

𝑆𝑆𝑇 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴𝐵 + 𝑆𝑆𝐸
(𝑎𝑏𝑛 − 1) 𝑎 − 1 𝑏 − 1 (𝑎 − 1)(𝑏 − 1) 𝑎𝑏(𝑛 − 1)

If 𝑆𝑆𝐴, 𝑆𝑆𝐵, 𝑆𝑆𝐴𝐵, and 𝑆𝑆𝐸 are independent, then using Cochran’s
theorem we can write

𝑆𝑆𝐴 ∼ 𝜒2
(𝑎−1), 𝑆𝑆𝐵 ∼ 𝜒2

(𝑏−1), 𝑆𝑆𝐴𝐵 ∼ 𝜒2
(𝑎−1)(𝑏−1), 𝑆𝑆𝐸 ∼ 𝜒2

(𝑎𝑏(𝑛−1))

since

(𝑛 − 1) = (𝑎 − 1) + (𝑏 − 1) + (𝑎 − 1)(𝑏 − 1) + 𝑎𝑏(𝑛 − 1)
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Distributions of sum of squares

Since 𝑆𝑆𝐴 ∼ 𝜒2
(𝑎−1) and 𝑆𝑆𝐸 ∼ 𝜒2

(𝑏−1), and 𝑆𝑆𝐴 and 𝑆𝑆𝐸 are
independent, then

𝐹𝐴 = 𝑆𝑆𝐴/(𝑎 − 1)
𝑆𝑆𝐸/(𝑎𝑏(𝑛 − 1)) = 𝑀𝑆𝐴

𝑀𝑆𝐸
∼ 𝐹𝑎−1,𝑎𝑏(𝑛−1) under 𝐻0

Similarly,

𝐹𝐵 = 𝑆𝑆𝐵/(𝑏 − 1)
𝑆𝑆𝐸/(𝑎𝑏(𝑛 − 1)) = 𝑀𝑆𝐵

𝑀𝑆𝐸
∼ 𝐹𝑏−1,𝑎𝑏(𝑛−1) under 𝐻0

𝐹𝐴𝐵 = 𝑆𝑆𝐴𝐵/(𝑎 − 1)(𝑏 − 1)
𝑆𝑆𝐸/(𝑎𝑏(𝑛 − 1)) = 𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
∼ 𝐹(𝑎−1)(𝑏−1),𝑎𝑏(𝑛−1) under 𝐻0
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Analysis of variance table
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Analysis of variance table

Manual computing formulas for sum of squares

𝑆𝑆𝑇 = ∑
𝑖

∑
𝑗

∑
𝑘
(𝑦𝑖𝑗𝑘 − ̄𝑦⋅⋅⋅)2 = ∑

𝑖
∑
𝑗

∑
𝑘

𝑦2𝑖𝑗𝑘 − 𝑦2⋅⋅⋅
𝑎𝑏𝑛

𝑆𝑆𝐴 = 𝑏𝑛∑
𝑖
( ̄𝑦𝑖⋅⋅ − ̄𝑦⋅⋅⋅)2 = 1

𝑏𝑛 ∑
𝑖

𝑦2𝑖⋅⋅ −
𝑦2⋅⋅⋅
𝑎𝑏𝑛

𝑆𝑆𝐵 = 𝑎𝑛∑
𝑗
( ̄𝑦⋅𝑗⋅ − ̄𝑦⋅⋅⋅)2 = 1

𝑎𝑛 ∑
𝑗

𝑦2⋅𝑗⋅ −
𝑦2⋅⋅⋅
𝑎𝑏𝑛
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Analysis of variance table
Manual computing formulas for sum of squares

𝑆𝑆𝐴𝐵 = 𝑛∑
𝑖

∑
𝑗
( ̄𝑦𝑖𝑗⋅ − ̄𝑦𝑖⋅⋅ − ̄𝑦⋅𝑗⋅ + ̄𝑦⋅⋅⋅)2

= 𝑛∑
𝑖

∑
𝑗
( ̄𝑦𝑖𝑗⋅ − ̄𝑦⋅⋅⋅)2 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 (ℎ𝑜𝑤?)

= 𝑆𝑆subtotals − 𝑆𝑆𝐴 − 𝑆𝑆𝐵,
where

𝑆𝑆subtotals = 𝑛∑
𝑖

∑
𝑗
( ̄𝑦𝑖𝑗⋅ − ̄𝑦⋅⋅⋅)2 = 1

𝑛 ∑
𝑖

∑
𝑗

𝑦2𝑖𝑗⋅ −
𝑦2⋅⋅⋅
𝑎𝑏𝑛

Then

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴𝐵 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵
or

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝑠𝑢𝑏𝑡𝑜𝑡𝑎𝑙𝑠
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Subsection 5

The battery design experiment
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The battery design experiment

Let 𝑦𝑖𝑗𝑘 denote the observed lifetime of the battery corresponding to
the 𝑘th replication of the treatment combination 𝑖th material type
(treatment A) and 𝑗th temperature (treatment B)
(𝑖 = 1, 2, 3; 𝑗 = 1, 2, 3; 𝑘 = 1,… , 4).
Consider the effects model

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘,

where 𝜇 is the overall mean, 𝜏𝑖 and 𝛽𝑗 are the effects of the 𝑖th level
of factor 𝐴 and 𝑗th level of factor 𝐵, (𝜏𝛽)𝑖𝑗 is the interction between
the 𝑖th level of factor 𝐴 and 𝑗th level of factor 𝐵.

Random error term 𝜖𝑖𝑗𝑘 is assumed to be normally distributed with
mean 0 and a constant variance 𝜎2.
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The battery design experiment

𝑆𝑆𝑇 = ∑
𝑖

∑
𝑗

∑
𝑗

𝑦2𝑖𝑗𝑘 − 𝑦2⋅⋅⋅
𝑎𝑏𝑛

= (130)2 +⋯+ (60)2 − (3799)2
36 = 77646.97
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The battery design experiment
𝑆𝑆𝐴 = 1

𝑏𝑛 ∑
𝑖

𝑦2𝑖⋅⋅ −
𝑦2⋅⋅⋅
𝑎𝑏𝑛

= 1
(3)(4){(998)

2 + (1300)2 + (1501)2} − (3799)2
36 = 10683.72

𝑆𝑆𝐵 = 1
𝑎𝑛 ∑

𝑗
𝑦2⋅𝑗⋅ −

𝑦2⋅⋅⋅
𝑎𝑏𝑛

= 1
(3)(4){(1738)

2 + (1291)2 + (770)2} − (3799)2
36 = 39118.72

𝑆𝑆Subtotals =
1
𝑛 ∑

𝑖
∑
𝑗

𝑦2𝑖𝑗⋅ −
𝑦2⋅⋅⋅
𝑎𝑏𝑛

= 1
4{(539)

2 +⋯+ (342)2} − (3799)2
36 = 49515373
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The battery design experiment

𝑆𝑆𝑇 = 77, 646.97
𝑆𝑆𝐴 = 10, 683.72
𝑆𝑆𝐵 = 39118.72

𝑆𝑆𝐴𝐵 = 𝑆𝑆subtotals − 𝑆𝑆𝐴 − 𝑆𝑆𝐵
= 49515373 − 10683.72 − 39118.72
= 9, 613.78

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐴𝐵
= 77646.97 − 10683.72 − 39118.72 − 9613.78
= 18, 230.78
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The battery design experiment

The battery design experiment (anova table)

There is a significant interaction between material type and
temperature
Main effects of material type and temperature are also significant
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The battery design experiment
The battery design experiment (interpreting results)

1 The significant interaction is indicated by
the lack of parallelism of the lines

2 In general, longer life is attained at the low
temperature, regardless of material type.

3 Changing from low to intermediate
temperature, battery life with material type
3 increases, whereas it decreases for types 1
and 2.

4 From intermediate to high temperature,
battery life decreases for material types 2
and 3, and is essentially unchanged for type
1.

5 Material type 3 seems to give the best
result if we want less loss of effective life as
the temperature changes.
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The battery design experiment

The battery design experiment (multiple comparisons)

One of the goals of the experiment is to identify the best treatment
combination. In two-factor factorial experiment, significance of interaction
plays an important role in selecting the best treatment combination.

When interaction is not significant, multiple comparison methods
can be used to identify the best level for each factor separately.
When interaction is significant, the best level of one factor need to
be identified at each level of the other factor. e.g. comparisons
between the means of factor 𝐴 can be obtained for a specific level of
factor 𝐵 applying Tukey’s test.
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The battery design experiment

Suppose we are interested in detecting differences among the means
of the three material types.

Because interaction is significant, we make this comparison at just
one level of temperature, say level 2 (70°F)

The three material type averages at 70∘F arranged in ascending order
are

̄𝑦12. = 57.25 ( material type 1)
̄𝑦22. = 119.75 ( material type 2)
̄𝑦32. = 145.75 ( material type 3)
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The battery design experiment
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Model adequacy checking

Before making the conclusions from the analysis of variance, the
adequacy of the underlying model should be checked using residual
analysis (e.g. checking normality, independence, constant variance,
etc.).

The residuals for the two-factor factorial model

𝑒𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 − ̂𝑦𝑖𝑗𝑘
= 𝑦𝑖𝑗𝑘 − ̄𝑦𝑖𝑗⋅

Different tools of residual analysis:
▶ q-q normal plot of residuals
▶ Plot of residuals against fitted values
▶ Plot of residuals against different factors separately
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Model adequacy checking
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Model adequacy checking
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Model adequacy checking
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Model adequacy checking
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Subsection 6

Estimating model parameters
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Estimating model parameters

The effects model for two-factor factorial is

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘, (3)

where 𝜇, 𝜏𝑖, 𝛽𝑗, and (𝜏𝛽)𝑖𝑗 are parameters of interest, and random error
term is assumed to be normally distributed, i.e.

𝜖𝑖𝑗𝑘 ∼ 𝒩(0, 𝜎2) ⇒ 𝑦𝑖𝑗𝑘 ∼ 𝒩(𝜇𝑖𝑗, 𝜎2)

They may be estimated by least squares. Because the model has
1 + 𝑎 + 𝑏 + 𝑎𝑏 parameters to be estimated, and there 1 + 𝑎 + 𝑏 + 𝑎𝑏
normal equations.
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Estimating model parameters

Using the method of Section 3.9, we find that it is not difficult to show
that the normal equations are
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Estimating model parameters

The effects model (Equation 3) is an overparameterized model.

Notice that the 𝑎 equations in Equation 5.14b sum to Equation 5.14a
and that the 𝑏 equations of Equation 5.14c sum to Equation 5.14a.

Also summing Equation 5.14d over 𝑗 for a particular 𝑖 will give
Equation 5.14b, and summing Equation 5.14d over 𝑖 for a particular 𝑗
will give Equation 5.14c.

Therefore, there are 𝑎 + 𝑏 + 1 linear dependencies in this system of
equations, and no unique solution will exist.

In order to obtain a solution, we impose the constraints
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Estimating model parameters

Equations 5.15a and 5.15b constitute two constraints, whereas Equations
5.15c and 5.15d form 𝑎 + 𝑏 − 1 independent constraints. Therefore, we
have 𝑎 + 𝑏 + 1 total constraints, the number needed.
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Estimating model parameters

Applying these constraints, the normal equations (Equations 5.14) simplify
considerably, and we obtain the solution
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The MLE
The log-likelihood function

𝑙(𝜃) = ∑
𝑖

∑
𝑗

∑
𝑘

{ − log𝜎2

2 − 1
2𝜎2(𝑦𝑖𝑗𝑘 − 𝜇𝑖𝑗)

2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡},

where 𝜃 = {𝜇, 𝜏𝑖, 𝛽𝑗, (𝜏𝛽)𝑖𝑗} is the vector of parameters of order
1 + 𝑎 + 𝑏 + 𝑎𝑏.

𝑆𝑆𝐸 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

𝜖2𝑖𝑗𝑘 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑦𝑖𝑗𝑘 − 𝜇𝑖𝑗)
2 .

Here
̂𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙(𝜃)

̂𝜃𝐿𝑆𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑆𝑆𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙(𝜃)

Therefore, the solutions obtained (through LSE) are also MLE.
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Subsection 7

Choice of sample size
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Choice of sample size

In any experimental design problem, a critical decision is the choice of
sample size — that is, determining the number of replicates to run.

Generally, if the experimenter is interested in detecting small effects,
more replicates are required than if the experimenter is interested in
detecting large effects.
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OC (Operating Characteristic) curve

An operating characteristic (OC) curve is a plot of the type II error
probability (𝛽) of a statistical test for a particular sample size versus a
parameter Φ that reflects the extent to which the null hypothesis is
false.

These curves can be used to guide the experimenter in selecting the
number of replicates so that the design will be sensitive to important
potential differences in the treatments.

The operating characteristic curves in Appendix Chart V
(Montgomery book) can be used to assist the experimenter in
determining an appropriate sample size (number of replicates, 𝑛) for a
two-factor factorial design.

Curves are available for 𝛼 = 0.05 and 𝛼 = 0.01 and a range of
degrees of freedom for numerator and denominator.
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OC (Operating Characteristic) curve
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OC curve for two-factor factorial design

OC Curve parameters for chart V of the Appendix for the two-factor
factorial, fixed effects model

Factor Φ2 Numerator DF Denominator DF
𝐴 𝑏𝑛∑𝑎

𝑖=1 𝜏2
𝑖

𝑎𝜎2 𝑎 − 1 𝑎𝑏(𝑛 − 1)
𝐵 𝑎𝑛∑𝑏

𝑗=1 𝛽2
𝑗

𝑏𝜎2 𝑏 − 1 𝑎𝑏(𝑛 − 1)
𝐴𝐵 𝑛∑𝑎

𝑖=1 ∑𝑏
𝑗=1(𝜏𝛽)2𝑖𝑗

𝜎2[(𝑎−1)(𝑏−1)+1] (𝑎 − 1)(𝑏 − 1) 𝑎𝑏(𝑛 − 1)

For two-factor factorial design, the appropriate value of the parameter
Φ and the numerator and denominator degrees of freedom are shown
in the table.
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OC curve for two-factor factorial design

To determine Φ, we need to know the actual values of the treatment
means on which the sample size decision should be based. If we know
that, we can use the formulas of the table and proceed as the
one-factor design. But a set of actual treatment means is not
available most of the time.

An alternate approach is to select a sample size such that if the
difference between any two treatment means exceeds a specified
value, the null hypothesis should be rejected.
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OC curve for two-factor factorial design
For example, if the difference in any two row (Factor 𝐴) means is 𝐷,
then the minimum value of Φ2 is

Φ2 = 𝑛𝑏𝐷2

2𝑎𝜎2

If the difference in any two column (Factor 𝐵) means is 𝐷, then the
minimum value of Φ2 is

Φ2 = 𝑛𝑎𝐷2

2𝑏𝜎2

Finally, the minimum value of Φ2 corresponding to a difference of 𝐷
between any two interaction effects is

Φ2 = 𝑛𝐷2

2𝜎2[(𝑎 − 1)(𝑏 − 1) + 1] .
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OC curve…(Battery design experiment)
To illustrate the use of these equations, consider the battery design
experiment.

Suppose that before running the experiment we decide that the null
hypothesis should be rejected with a high probability if the difference
in mean battery life between any two temperatures is as great as 40
hours.

Thus a difference of 𝐷 = 40 has engineering significance, and if we
assume that the standard deviation of battery life is approximately 25
, then the corresponding equation gives

Φ2 = 𝑛𝑎𝐷2

2𝑏𝜎2

= 𝑛(3)(40)2
2(3)(25)2

= 1.28𝑛

as the minimum value of Φ.
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OC curve…(Battery design experiment)

Assuming that 𝛼 = 0.05, we can now use Appendix Table V to construct
the following display:

𝜈1 = Numerator 𝜈2 = Error
𝑛 Φ2 Φ Degrees of Freedom Degrees of Freedom 𝛽
2 2.56 1.60 2 9 0.45
3 3.84 1.96 2 18 0.18
4 5.12 2.26 2 27 0.06
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OC curve…(Battery design experiment)

Note that 𝑛 = 4 replicates give a 𝛽 risk of about 0.06, or
approximately a 94 percent chance of rejecting the null hypothesis if
the difference in mean battery life at any two temperature levels is as
large as 40 hours.

Thus, we conclude that four replicates are enough to provide the
desired sensitivity as long as our estimate of the standard deviation of
battery life is not seriously in error.

If in doubt, the experimenter could repeat the above procedure with
other values of 𝜎 to determine the effect of mis-estimating this
parameter on the sensitivity of the design.
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Subsection 8

Assumption of no interaction in a two-factor model
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Assumption of no interaction in a two-factor model
Occasionally, an experimenter feels that a two-factor model without
interaction is appropriate, say

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗𝑘
⎧{
⎨{⎩

𝑖 = 1, 2,… , 𝑎
𝑗 = 1, 2,… , 𝑏
𝑘 = 1, 2,… , 𝑛

The statistical analysis of a two-factor factorial model without interaction
is straightforward. The following table presents the analysis of the battery
design experiment, assuming no interaction.

Source of Sum Degrees Mean
Variation of Squares of Freedom Square 𝐹0
Material types 10, 683.72 2 5, 341.86 5.95
Temperature 39, 118.72 2 19, 559.36 21.78
Error 27, 844.52 31 898.21
Total 77, 646.96 35
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Assumption of no interaction in a two-factor model
As noted previously, both main effects are significant. However, as soon as
a residual analysis is performed for these data, it becomes clear that the
no-interaction model is inadequate.

For the two-factor model without interaction, the fitted values are
̂𝑦𝑖𝑗𝑘 = ̄𝑦𝑖.. + ̄𝑦𝑗. − ̄𝑦.... A plot of fitted versus residuals is shown below.
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Subsection 9

One observation per cell
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One observation per cell

Occasionally, one encounters a two-factor experiment with only a single
replicate, that is, only one observation per cell. If there are two factors and
only one observation per cell, the effects model is

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝜖𝑖𝑗 { 𝑖 = 1, 2,… , 𝑎
𝑗 = 1, 2,… , 𝑏

The analysis of variance for this situation is shown in Table 5.9, assuming
that both factors are fixed.
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One observation per cell
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One observation per cell

From examining the expected mean squares, we see that the error variance
𝜎2 is not estimable; that is, the two-factor interaction effect (𝜏𝛽)𝑖𝑗 and
the experimental error cannot be separated in any obvious manner.
Consequently, there are no tests on main effects unless the interaction
effect is zero. If there is no interaction present, then (𝜏𝛽)𝑖𝑗 = 0 for all 𝑖
and 𝑗, and a plausible model is

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗 { 𝑖 = 1, 2,… , 𝑎
𝑗 = 1, 2,… , 𝑏

If this later model is appropriate, then the residual mean square in Table
5.9 is an unbiased estimator of 𝜎2, and the main effects may be tested by
comparing 𝑀𝑆𝐴 and 𝑀𝑆𝐵 to 𝑀𝑆Residual .
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Subsection 10

5.4 The general factorial design
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General factorial design

The two-factor factorial design may be extended to the general case where
there are a levels of factor 𝐴, 𝑏 levels of factor 𝐵, 𝑐 levels of factor 𝐶, and
so on.

In general, there will be 𝑎𝑏𝑐…𝑛 total observations if there are 𝑛 replicates
of the complete experiment.

Note that we must have at least two replicates (𝑛 ≥ 2) to determine a sum
of squares due to error if all possible interactions are included in the model.
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General factorial design

For example, consider the three-factor analysis of variance model:

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝛾𝑘 + (𝜏𝛽)𝑖𝑗 + (𝜏𝛾)𝑖𝑘 + (𝛽𝛾)𝑗𝑘 + (𝜏𝛽𝛾)𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘𝑙

⎧{
⎨{⎩

𝑖 = 1, 2,… , 𝑎
𝑗 = 1, 2,… , 𝑏
𝑘 = 1, 2,… , 𝑐
𝑙 = 1, 2,… , 𝑛
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General factorial design
Assuming 𝐴, 𝐵, and 𝐶 are fixed, the ANOVA table is
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General factorial design
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General factorial design
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Soft drink bottling problem

A soft drink bottler is interested in obtaining more uniform fill heights in
the bottles produced by his manufacturing process. The filling machine
theoretically fills each bottle to the correct target height, but in practice,
there is variation around this target, and the bottler would like to
understand the sources of this variability better and eventually reduce it.

The process engineer can control three variables during the filling process:
the percent carbonation (A), the operating pressure in the filler (B), and
the bottles produced per minute or the line speed (C). For purposes of an
experiment, the engineer can control carbonation at three levels: 10, 12,
and 14 percent. She chooses two levels for pressure (25 and 30 psi) and
two levels for line speed (200 and 250 bpm)
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Soft drink bottling problem

The engineer decides to run two replicates of a factorial design in these
three factors, with all 24 runs taken in random order. The response
variable observed is the average deviation from the target fill height
observed in a production run of bottles at each set of conditions. Positive
deviations are fill heights above the target, whereas negative deviations are
fill heights below the target. The circled numbers are the three-way cell
totals 𝑦𝑖𝑗𝑘.
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Soft drink bottling problem
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Soft drink bottling problem
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Soft drink bottling problem
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Soft drink bottling problem
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Soft drink bottling problem
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Soft drink bottling problem
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Soft drink bottling problem

From the ANOVA we see that the percentage of carbonation, operating
pressure, and line speed significantly affect the fill volume.

The carbonation pressure interaction 𝐹 ratio has a 𝑝-value of 0.0558,
indicating some interaction between these factors.

To assist in the practical interpretation of this experiment, the following
figure presents plots of the three main effects and the 𝐴𝐵 (carbonation–
pressure) interaction.
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Soft drink bottling problem
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Soft drink bottling problem
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Soft drink bottling problem

The main effect plots are just graphs of the marginal response averages at
the levels of the three factors. Notice that all three variables have positive
main effects; that is, increasing the variable moves the average deviation
from the fill target upward.

The interaction between carbonation and pressure is fairly small, as shown
by the similar shape of the two curves.
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Subsection 11

5.5 Fitting Response Curves and Surfaces
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5.5 Fitting Response Curves and Surfaces

The ANOVA always treats all of the factors in the experiment as if they
were qualitative or categorical. Many experiments involve at least one
quantitative factor. It can be useful to fit a response curve to the levels
of a quantitative factor so that the experimenter has an equation that
relates the response to the factor

This equation might be used for interpolation, that is, for predicting the
response at factor levels between those actually used in the experiment.
When at least two factors are quantitative, we can fit a response surface
for predicting y at various combinations of the design factors. In general,
linear regression methods are used to fit these models to the
experimental data
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The battery design experiment

Consider the battery life experiment described previously. The factor
temperature is quantitative, and the material type is qualitative.

Furthermore, there are three levels of temperature.

Consequently, we can compute a linear and a quadratic temperature effect
to study how temperature affects the battery life.

Because material type is a qualitative factor there is an equation for
predicted life as a function of temperature for each material type.
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The battery design experiment
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The battery design experiment
Figure 5.18 shows the response curves generated by these three prediction
equations.
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Subsection 12

5.6 Blocking in a facorial design
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5.6 Blocking in a facorial design

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝛿𝑘 + 𝜖𝑖𝑗𝑘
⎧{
⎨{⎩

𝑖 = 1, 2,… , 𝑎
𝑗 = 1, 2,… , 𝑏
𝑘 = 1, 2,… , 𝑛

where 𝛿𝑘 is the effect of the 𝑘 th block. Of course, within a block the order
in which the treatment combinations are run is completely randomized.
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5.6 Blocking in a facorial design
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Example 5.6

An engineer is studying methods for improving the ability to detect targets
on a radar scope. Two factors she considers to be important are the
amount of background noise, or ground clutter, on the scope and the
type of filter placed over the screen. An experiment is designed using 3
levels of ground clutter and 2 filter types.

Because of operator availability, it is convenient to select an operator and
keep him or her at the scope until all the necessary runs have been made.
Furthermore, operators differ in their skill and ability to use the scope.
Consequently, it seems logical to use the operators as blocks.

Four operators are randomly selected. Once an operator is chosen, the
order in which the six treatment combinations are run is randomly
determined.
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Example 5.6

Thus, we have a 3 × 2 factorial experiment run in a randomized complete
block. The data are shown below

Md Rasel Biswas Chapter 5 105 / 112



Example 5.6
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Example 5.6
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Example 5.6
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Example 5.6

Both ground clutter level and filter type are significant at the 1 percent
level, whereas their interaction is significant only at the 10 percent level.

Thus, we conclude that both ground clutter level and the type of scope
filter used affect the operator’s ability to detect the target, and there is
some evidence of mild interaction between these factors.
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Subsection 13

Exercise
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Exercise

The following output was obtained from a computer program that
performed a two-factor ANOVA on a factorial experiment.

(a) Fill in the blanks in the ANOVA table. You can use bounds on the
p-values.

(b) How many levels were used for factor 𝐵?
(c) How many replicates of the experiment were performed?
(d) What conclusions would you draw about this experiment?
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Exercise

Practice exercises from Montgomery book:

5.41, 5.42, 5.43, 5.44, 5.45, 5.46
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