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Section 1

6. The 2𝑘 Factorial Design
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6.1 Introduction
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6.1 Introduction

Factorial designs are widely used in experiments involving several
factors where it is necessary to study the joint effect of the factors on
a response.

Chapter 5 presented general methods for the analysis of factorial
designs.

However, several special cases of the general factorial design are
important because they are widely used in research work and also
because they form the basis of other designs of considerable practical
value.
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6.1 Introduction

The most important of these special cases is that of 𝑘 factors, each at
only two levels.

These levels may be quantitative, such as two values of temperature,
pressure, or time; or they may be qualitative, such as two machines,
two operators, the “high” and “low” levels of a factor, or perhaps the
presence and absence of a factor.

A complete replicate of such a design requires 2 × 2 × ⋯ × 2 = 2𝑘

observations and is called a 2𝑘 factorial design.

This chapter focuses on this extremely important class of designs.
Throughout this chapter, we assume that

(1) the factors are fixed,
(2) the designs are completely randomized, and
(3) the usual normality assumptions are satisfied.
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6.1 Introduction

The 2𝑘 design is particularly useful in the early stages of experimental work
when many factors are likely to be investigated.

It provides the smallest number of runs with which 𝑘 factors can be
studied in a complete factorial design.

Consequently, these designs are widely used in factor screening
experiments (where the experiments is intended in discovering the set of
active factors from a large group of factors).
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Subsection 2

6.2 The 22 design
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6.2 The 22 design

The first design in the 2𝑘 series is one with only two factors, say 𝐴
and 𝐵, each run at two levels.

This design is called a 22 factorial design.

The levels of the factors may be arbitrarily called “low” and “high.”
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6.2 The 22 design

Consider an investigation into the effect of the concentration of the
reactant (factor A) and the amount of catalyst (factor B) on the yield
in a chemical process.

▶ Levels of factor A: 15 and 25 percent
▶ Levels of factor B: 1 and 2 pounds

The objective of the experiment is to determine if adjustments to
either of these two factors would increase the yield.

The experiment is replicated three times, so there are 12 runs. The
order in which the runs are made is random, so this is a completely
randomized experiment.
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6.2 The 22 design
Data layout:

Graphical view:
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6.2 The 22 design

By convention, we denote the effect of a factor by a capital Latin letter.

“A” refers to the effect of factor A,

“B” refers to the effect of factor B, and

“AB” refers to the AB interaction.

The four treatment combinations in the design are represented by
lowercase letters.
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6.2 The 22 design

The high level of any factor in the treatment combination is denoted
by the corresponding lowercase letter and that the low level of a
factor in the treatment combination is denoted by the absence of the
corresponding letter.

Thus 𝑎 represents the treatment combination of 𝐴 at the high level
and 𝐵 at the low level, 𝑏 represents 𝐴 at the low level and 𝐵 at the
high level, and 𝑎𝑏 represents both factors at the high level.

By convention, (1) is used to denote both factors at the low level.

This notation is used throughout the 2𝑘 series.

Md Rasel Biswas Chapter 6 13 / 126



6.2 The 22 design

In a two-level factorial design the average effect of a factor is defined
as the change in response produced by a change in the level of that
factor averaged over the levels of the other factor.

The symbols (1), 𝑎, 𝑏, and 𝑎𝑏 represent the total of the response
observation at all 𝑛 replicates taken at the treatment combination.

The effect of 𝐴 at the low level of B is [𝑎 − (1)]/𝑛, and the effect of
𝐴 at the high level of 𝐵 is [𝑎𝑏 − 𝑏]/𝑛. Averaging these two quantities
yields the main effect of 𝐴:

𝐴 = 1
2{[𝑎𝑏 − 𝑏] + [𝑎 − (1)]

𝑛 }

= 1
2𝑛[𝑎𝑏 + 𝑎 − 𝑏 − (1)]

Md Rasel Biswas Chapter 6 14 / 126



6.2 The 22 design
The main effect of 𝐵 is:

𝐵 = 1
2{[𝑎𝑏 − 𝑎] + [𝑏 − (1)]

𝑛 }

= 1
2𝑛[𝑎𝑏 + 𝑏 − 𝑎 − (1)]

We define the interaction effect 𝐴𝐵 as the average difference
between the effect of 𝐴 at the high level of 𝐵 and the effect of 𝐴 at
the low level of 𝐵. Thus,

𝐴𝐵 = 1
2{[𝑎𝑏 − 𝑏] − [𝑎 − (1)]

𝑛 }

= 1
2𝑛[𝑎𝑏 + (1) − 𝑎 − 𝑏] (6.3)

Alternatively, we may define 𝐴𝐵 as the average difference between
the effect of 𝐵 at the high level of A and the effect of 𝐵 at the low
level of A. This will also lead to Equation 6.3.
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6.2 The 22 design

𝐴 = 1
2(3)(90 + 100 − 60 − 80) = 8.33

𝐵 = 1
2(3)(90 + 60 − 100 − 80) = −5.00

𝐴𝐵 = 1
2(3)(90 + 80 − 100 − 60) = 1.67
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6.2 The 22 design

The effect of A (reactant concentration) is positive; this suggests that
increasing A from the low level (15%) to the high level (25%) will
increase the yield.

The effect of B (catalyst) is negative; this suggests that increasing
the amount of catalyst added to the process will decrease the yield.

The interaction effect appears to be small relative to the two main
effects.

The magnitude and direction of factor effects can be used to determine
the important factor and ANOVA can generally be used to confirm the
interpretation.*
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Sum of squares
Now we consider determining the sums of squares for 𝐴, 𝐵, and 𝐴𝐵.

Note that, in estimating A, a contrast is used:

𝐴 = 1
2𝑛[𝑎𝑏 + 𝑎 − 𝑏 − (1)] = ( 1

2𝑛) Contrast𝐴

Similarly,

𝐵 = 1
2𝑛[𝑎𝑏 − 𝑎 + 𝑏 − (1)] = ( 1

2𝑛) Contrast𝐵

𝐴𝐵 = 1
2𝑛[𝑎𝑏 − 𝑎 − 𝑏 + (1)] = ( 1

2𝑛) Contrast𝐴𝐵

The three contrasts — Contrast𝐴, Contrast𝐵, and Contrast𝐴𝐵 — are
orthogonal.
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Sum of squares

The sum of squares for any contrast is equal to the contrast squared
divided by the number of observations in each total in the contrast times
the sum of the squares of the contrast coefficients.

𝑆𝑆𝐴 = ( 1
22𝑛)Contrast2𝐴 = 1

4𝑛 [𝑎𝑏 + 𝑎 − 𝑏 − (1)]2
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Sum of squares

𝑆𝑆𝐴 = ( 1
22𝑛)Contrast2𝐴 = 1

4𝑛 [𝑎𝑏 + 𝑎 − 𝑏 − (1)]2

𝑆𝑆𝐵 = ( 1
22𝑛)Contrast2𝐵 = 1

4𝑛 [𝑎𝑏 − 𝑎 + 𝑏 − (1)]2

𝑆𝑆𝐴𝐵 = ( 1
22𝑛)Contrast2𝐴𝐵 = 1

4𝑛 [𝑎𝑏 − 𝑎 − 𝑏 + (1)]2

Total sum of squares

𝑆𝑆𝑇 = ∑
𝑖

∑
𝑗

∑
𝑘

𝑦2
𝑖𝑗𝑘 − 𝑦2

⋅⋅⋅
4𝑛

Error sum of square

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐴𝐵
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Sum of squares

𝑆𝑆𝐴 = ( 1
22𝑛)Contrast2𝐴 = 1

4𝑛 [𝑎𝑏 + 𝑎 − 𝑏 − (1)]2 = 208.333

𝑆𝑆𝐵 = ( 1
22𝑛)Contrast2𝐵 = 1

4𝑛 [𝑎𝑏 − 𝑎 + 𝑏 − (1)]2 = 75

𝑆𝑆𝐴𝐵 = ( 1
22𝑛)Contrast2𝐴𝐵 = 1

4𝑛 [𝑎𝑏 − 𝑎 − 𝑏 + (1)]2 = 8.333

Total sum of squares

𝑆𝑆𝑇 = ∑
𝑖

∑
𝑗

∑
𝑘

𝑦2
𝑖𝑗𝑘 − 𝑦2

⋅⋅⋅
4𝑛 = 323

Error sum of square

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐴𝐵 = 31.333
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Analysis of Variance table

On the basis of the p-values, we conclude that the main effects are
statistically significant and that there is no interaction between these
factors. This confirms our initial interpretation of the data based on
the magnitudes of the factor effects.
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Standard order of treatment combinations

Treatment combinations written in the order (1), 𝑎, 𝑏, 𝑎𝑏 is known as
standard order or Yates’ order.

Using this standard order, we see that the contrast coefficients used
in estimating the effects are

Note that the contrast coefficients for estimating the interaction
effect are just the product of the corresponding coefficients for the
two main effects.
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Algebraic signs for calculating effects in 22 design
The contrast coefficient is always either +1 or −1, and a table of
plus and minus signs such as in Table 6.2 can be used to determine
the proper sign for each treatment combination

The symbol “I” indicates the total or average of the entire experiment.

To find the contrast for estimating any effect, simply multiply the
signs in the appropriate column of the table by the corresponding
treatment combination and add.

▶ For example, to estimate 𝐴, the contrast is −(1) + 𝑎 − 𝑏 + 𝑎𝑏.
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Algebraic signs for calculating effects in 22 design

The contrasts for the effects 𝐴, 𝐵, and 𝐴𝐵 are orthogonal. Thus, the
22 (and all 2k designs) is an orthogonal design.

The ±1 coding for the low and high levels of the factors is often
called the orthogonal coding or the effects coding.
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Regression model

In a 2𝑘 factorial design, it is easy to express the results of the
experiment in terms of a regression model.

For the chemical process experiment, the regression model is

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜖,

where
▶ 𝑥1 and 𝑥2 are the coded variables for the reactant concentration and

the amount of catalyst, respectively
▶ 𝛽’s are regression coefficients
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Regression model

The relationship between the natural variables, the reactant
concentration and the amount of catalyst, and the coded variables is

𝑥1 = Conc − (Conclow + Conchigh)/2
(Conchigh − Conclow)/2

𝑥2 =
Catalyst − (Catalystlow + Catalysthigh)/2

(Catalysthigh − Catalystlow)/2
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Regression model
The coded variables are defined as

𝑥1 = Conc − (Conclow + Conchigh)/2
(Conchigh − Conclow)/2

= Conc − 20
5

= { 1 if Conc=25
−1 if Conc=15

𝑥2 =
Catalyst − (Catalystlow + Catalysthigh)/2

(Catalysthigh − Catalystlow)/2

= Catalyst − 1.5
0.5

= { 1 if Catalyst=2
−1 if Catalyst=1
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Regression model
Regression model fitting in R

# Define the data
y <- c(28, 25, 27, 36, 32, 32, 18, 19, 23, 31, 30, 29)
A <- rep(c(15, 25), each = 3, times = 2)
B <- rep(c(1, 2), each = 6)

# Create the data frame and compute coded variables
dat <- data.frame(A = A, B = B, y = y) |>
transform(
A_coded = (A - mean(A)) / abs(diff(range(A)) / 2),
B_coded = (B - mean(B)) / abs(diff(range(B)) / 2)

)

print(head(dat))

A B y A_coded B_coded
1 15 1 28 -1 -1
2 15 1 25 -1 -1
3 15 1 27 -1 -1
4 25 1 36 1 -1
5 25 1 32 1 -1
6 25 1 32 1 -1
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Regression model

Regression model fitting in R

fit <- lm(y ~ A_coded + B_coded, data = dat)
coef(fit)
(Intercept) A_coded B_coded
27.500000 4.166667 -2.500000
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Regression model
The fitted regression model is

̂𝑦 = 27.5 + 4.167𝑥1 − 2.5𝑥2

̂𝑦 = 27.5 + (8.33
2 )𝑥1 + (−5.00

2 )𝑥2

If you look carefully:

Intercept is the grand average of all 12 observations
̂𝛽1 and ̂𝛽2 are one-half the corresponding factor effect estimates

Ques:
Why is the regression coefficients are one half the effect estimates?

Answer:
Regression coefficient measures the effect of one-unit change in 𝑥 on 𝑦,
whereas effect estimate is based on a two-unit change (from −1 to +1)
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Regression model
anova(lm(y ~ A_coded + B_coded, data = dat))

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A_coded 1 208.333 208.333 47.269 7.265e-05 ***
B_coded 1 75.000 75.000 17.017 0.002578 **
Residuals 9 39.667 4.407
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm(y ~ A_coded * B_coded, data = dat))

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A_coded 1 208.333 208.333 53.1915 8.444e-05 ***
B_coded 1 75.000 75.000 19.1489 0.002362 **
A_coded:B_coded 1 8.333 8.333 2.1277 0.182776
Residuals 8 31.333 3.917
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residuals and Model Adequacy

The regression model can be used to obtain the predicted or fitted
value of 𝑦 at the four points in the design.

Residuals, 𝑒 = 𝑦 − ̂𝑦, are:
x1 <- dat$A_coded
x2 <- dat$B_coded
yhat <- 27.5 + (8.33/2)*x1 + (-5/2)*x2
resd <- y - yhat
resd

[1] 2.165 -0.835 1.165 1.835 -2.165 -2.165 -2.835 -1.835 2.165 1.835
[11] 0.835 -0.165
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Residuals and Model Adequacy
qqnorm(resd, pch=20, ylim=c(-3.5, 2.5))
qqline(resd, lwd=1.5)
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Residuals and Model Adequacy
rresd <- sort(resd)
j <- 100*(1:12-.5)/12
plot(rresd,j, pch=20, xlab="residual", ylab="normal prob",

ylim=c(0,100), xlim=c(-3.25, 2.25))
abline(lm(j~rresd))
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Residuals and Model Adequacy
plot(yhat, resd, xlab="Fitted", pch=20,
ylab="Residuals", ylim=c(-3.25, 3), xlim=c(20, 35))
abline(h=0, lty=2)
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Response surface and contour plot

The regression model

̂𝑦 = 27.5 + (8.33
2 )𝑥1 + (−5.00

2 )𝑥2

can be used generate response surface plots.

It is desirable to construct such plots on the natural factor levels than the
coded factor levels, so

̂𝑦 = 27.5 + (8.33
2 )(Conc − 20

5 ) + (−5.00
2 )(Catalyst − 1.5

0.5 )
= 18.33 + 0.833Conc − 5.00Catalyst
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Response surface and contour plot

res <- lm(y~A+B, data=dat)
res

Call:
lm(formula = y ~ A + B, data = dat)

Coefficients:
(Intercept) A B

18.3333 0.8333 -5.0000
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Response surface and contour plot
conc <- seq(15, 25, length=30)
cata <- seq(1, 2, length=30)
yhatn <- outer(conc, cata, function(x, y) 18.33 + .833*x - 5*y)
persp(conc, cata, yhatn, theta=130, phi=30, expand=.7,

zlab="\n\nyhat", xlab="", ylab="", nticks=3,
col="lightblue", ticktype="detailed")

15
20

25

1.0
1.5

2.0
yhat 25

30
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Response surface and contour plot

contour(conc, cata, yhatn, nlevels=6, xlab="concentration",
ylab="catalyst")
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Example

A router is used to cut registration notches in printed circuit boards. The
average notch dimension is satisfactory, but there is too much variability in
the process. This excess variability leads to problems in board assembly. A
quality control team assigned to this project decided to use a designed
experiment to study the process. The team considered two factors: bit size
(𝐴) and speed (𝐵).

Two levels were chosen for each factor (bit size 𝐴 at 1/16 inch and 1/8
inch and speed 𝐵 at 40 rpm and 80 rpm and a 22 design was set up. Four
boards were tested at each of the four runs in the experiment, and the
resulting data are shown in the following table:
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Example

𝑅𝑢𝑛 𝐴 𝐵 𝑉 𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 Total
1 (1) − − 18.2 18.9 12.9 14.4 64.4
2 𝑎 + − 27.2 24.0 22.4 22.5 96.1
3 𝑏 − + 15.9 14.5 15.1 14.2 59.7
4 𝑎𝑏 + + 41.0 43.9 36.3 39.9 161.1

(a) Compute the main effects and interaction effect.
(b) Compute the sum of squares associated with the effects.
(c) Construct the ANOVA table and draw conclusion.
(d) Find residuals using regression method.
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Subsection 3

6.3 The 23 design
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6.3 The 23 design

The 23 factorial design has three factors (say 𝐴, 𝐵, and 𝐶) and each
factor has two levels each. The design has 8 treatment combinations.
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6.3 The 23 design

Standard order → (1), 𝑎, 𝑏, 𝑎𝑏, 𝑐, 𝑎𝑐, 𝑏𝑐, and 𝑎𝑏𝑐.
▶ Remember that these symbols also represent the total of all 𝑛

observations taken at that particular treatment combination.
Three different notations for 23 design:
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Effects in the 23 design

Main effects: 𝐴, 𝐵, and 𝐶
Two-factor interactions: 𝐴𝐵, 𝐴𝐶, 𝐵𝐶
Three-factor interaction: 𝐴𝐵𝐶
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Effects in the 23 design
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Effects in the 23 design
The 𝐴 effect is just the average of the four runs where 𝐴 is at the high
level ( ̄𝑦𝐴+) minus the average of the four runs where 𝐴 is at the low level
( ̄𝑦𝐴−),

𝐴 = ̄𝑦𝐴+ − ̄𝑦𝐴−

= 𝑎 + 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑏𝑐
4𝑛 − (1) + 𝑏 + 𝑐 + 𝑏𝑐

4𝑛
This equation can be rearranged as

𝐴 = 1
4𝑛[𝑎 + 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑏𝑐 − (1) − 𝑏 − 𝑐 − 𝑏𝑐]

Similarly

𝐵 = 1
4𝑛[𝑏 + 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑏𝑐 − (1) − 𝑎 − 𝑐 − 𝑎𝑐]

𝐶 = 1
4𝑛[𝑐 + 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏𝑐 − (1) − 𝑎 − 𝑏 − 𝑎𝑏]

The quantities in brackets are contrasts in the treatment combinations
Table of plus and minus signs for calculating effects

The column for 𝐴, 𝐵, abd 𝐶 are actually from the design matrix.
This table actually contains all the contrasts.
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Effects in the 23 design

Construction of plus and minus table:
1 Signs for the main effects are determined by associating a plus with

the high level and a minus with the low level.
2 Once the signs for the main effects have been established, the signs

for the remaining columns can be obtained by multiplying the
appropriate preceding columns
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Effects in the 23 design

Interesting properties of Table of plus and minus signs:
1 Except the column 𝐼 , every column has an equal number of + and −

signs
2 The sum of the products of any two columns is zero
3 The column 𝐼 multiplied any column leaves the column unchanged,

column 𝐼 is known as identity column
4 Product of any two columns yields a column in the table,

e.g. 𝐴 × 𝐵 = 𝐴𝐵, 𝐴𝐵 × 𝐵𝐶 = 𝐴𝐵2𝐶 = 𝐴𝐶 (mod 2).
Exponents in the products are formed by using modulus 2 arithmetic.

Property-2 indicates that it is an Orthogonal design
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Sum of squares

In the 23 design with 𝑛 replicates, the sum of squares for any effect is

𝑆𝑆 = Contrast2

23𝑛 = Contrast2

8𝑛
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The 23 design: An example

A soft drink bottler is interested in obtaining more uniform fill heights in
the bottles produced his manufacturing process.

The filling machine theoretically fills fills each bottle to the correct target
height, but in practice, there is variation around this target.

The bottler would like to understand better the sources of variability and
eventually reduce it.

The process engineer can control three factors during the filling process:
percentage of carbonation (A), operating pressure (B), and line speed (C).

Each factor has two levels: A (10% and 12%), B (25 psi and 30 psi), and
C (200 b/min and 300 b/min).
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The 23 design: An example

The data:

Notation for the response: 𝑦𝑖𝑗𝑘𝑙, 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2
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The 23 design: An example
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Estimation of effects

Main effect of A

𝐴 = (𝑎𝑏𝑐 + 𝑎𝑏 + 𝑎𝑐 + 𝑎 − 𝑏𝑐 − 𝑏 − 𝑐 − (1))/4𝑛
= (11 + 5 + 3 + 1 − 2 + 1 + 1 + 4)/8
= 24/8
= 3

Similarly,

𝐵 = (𝑎𝑏𝑐 + 𝑎𝑏 + 𝑏𝑐 + 𝑏 − 𝑎𝑐 − 𝑎 − 𝑐 − (1))/4𝑛 = 2.25

𝐶 = (𝑎𝑏𝑐 + 𝑎𝑐 + 𝑏𝑐 + 𝑐 − 𝑎𝑏 − 𝑎 − 𝑏 − (1))/4𝑛 = 1.75
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Estimation of effects

Interactions

𝐴𝐵 = (𝑎𝑏𝑐 + 𝑎𝑏 + 𝑐 + (1) − 𝑎𝑐 − 𝑏𝑐 − 𝑎 − 𝑏)/4𝑛 = 0.75

𝐴𝐶 = (𝑎𝑏𝑐 + 𝑎𝑐 + 𝑏 + (1) − 𝑎𝑏 − 𝑏𝑐 − 𝑎 − 𝑐)/4𝑛 = 0.25

𝐵𝐶 = (𝑎𝑏𝑐 + 𝑏𝑐 + 𝑎 + (1) − 𝑎𝑏 − 𝑎𝑐 − 𝑏 − 𝑐)/4𝑛 = 0.5

𝐴𝐵𝐶 = (𝑎𝑏𝑐 + 𝑎 + 𝑏 + 𝑐 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐 − (1))/4𝑛 = 0.5
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Sum of squares

𝑆𝑆𝐴 = Contrast2𝐴
8𝑛 = 242

16 = 36 𝑆𝑆𝐴𝐵 = 62

16 = 2.25

𝑆𝑆𝐵 = 182

16 = 20.25 𝑆𝑆𝐴𝐶 = 22

16 = 0.25

𝑆𝑆𝐶 = 142

16 = 12.25 𝑆𝑆𝐵𝐶 = 42

16 = 1

𝑆𝑆𝐴𝐵𝐶 = 42

16 = 1
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Sum of squares

Percentage contribution is a rough but effective guide to the relative
importance of each model term. Main effects dominate the process
accounting for over 87 percent of the total variation.
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Analysis of variance table

All the main effects are highly significant and only the interaction between
carbonation and pressure is significant at about 10 percent level of
significance.
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Regression model

The fitted regression model for the design is

̂𝑦 = 1 + (3
2)𝑥𝐴 + (2.25

2 )𝑥𝐵 + (1.75
2 )𝑥𝐶 + (0.75

2 )𝑥𝐴𝑥𝐵

= 1 + (3
2)carb − 11

1.0 + (2.25
2 )pres − 27.5

2.5 + (1.75
2 )speed − 250

50
+ (0.75

2 )(carb − 11
1.0 )(pres − 27.5

2.5 )

̂𝑦 = 9.625 + 2.62carb − 1.20pres + 0.035speed + 0.38carb × speed
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Regression model

The model sum of squares is

𝑆𝑆Model = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐶 + 𝑆𝑆𝐴𝐵 + 𝑆𝑆𝐴𝐶 + 𝑆𝑆𝐵𝐶 + 𝑆𝑆𝐴𝐵𝐶

Thus the statistic
𝐹0 = 𝑀𝑆Model

𝑀𝑆𝐸
is testing the hypotheses

𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽12 = 𝛽13 = 𝛽23 = 𝛽123 = 0

𝐻1 : at least one 𝛽 ≠ 0
If F0 is large, we would conclude that at least one variable has a nonzero
effect. Then each individual factorial effect is tested for significance using
the 𝐹 statistic.
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Regression model

𝑅2 = 𝑆𝑆Model
𝑆𝑆Total

It measures the proportion of total variability explained by the model.

A potential problem with this statistic is that it always increases as factors
are added to the model, even if these factors are not significant. The
adjusted R2 statistic, defined as

𝑅2
Adj = 1 − 𝑆𝑆𝐸/𝑑𝑓𝐸

𝑆𝑆Total /𝑑𝑓Total
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Regression model

𝑅2
Adj is a statistic that is adjusted for the “size” of the model, that is, the

number of factors.

The adjusted R2 can actually decrease if nonsignificant terms are added to
a model. The standard error of each coefficient, defined as

𝑠𝑒( ̂𝛽) = √𝑉 ( ̂𝛽) = √𝑀𝑆𝐸
𝑛2𝑘 = √𝑀𝑆𝐸

𝑁
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Regression model

The 95 percent confidence intervals on each regression coefficient are
computed from

̂𝛽 − 𝑡0.025,𝑁−𝑝 se( ̂𝛽) ≤ 𝛽 ≤ ̂𝛽 + 𝑡0.025,𝑁−𝑝 se( ̂𝛽)

where the degrees of freedom on 𝑡 are the number of degrees of freedom
for error; that is, 𝑁 is the total number of runs in the experiment (16),
and 𝑝 is the number of model parameters (8).
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Other Methods for Judging the Significance of Effects.

The analysis of variance is a formal way to determine which factor effects
are nonzero. Several other methods are useful. Now, we show how to
calculate the standard error of the effects, and we use these standard
errors to construct confidence intervals on the effects.

Confidence Interval of the Effect:

The 100(1 − 𝛼) percent confidence intervals on the effects are computed
from

Effect ± 𝑡𝛼/2, 𝑁−𝑝 ∗ se(Effect),
where

𝑠𝑒(Effect) = 2𝑆√
𝑛2𝑘

, where 𝑆2 = 𝑀𝑆𝐸
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Regression analysis with R

# Define the response variable
y3 <- c(-3, 0, -1, 2, -1, 2, 1, 6,

-1, 1, 0, 3, 0, 1, 1, 5)

# Create treatment variables
xA <- rep(c(-1, 1), each = 1, times = 8)
xB <- rep(c(-1, 1), each = 2, times = 4)
xC <- rep(c(-1, 1), each = 4, times = 2)

# Fit the linear model
reg.y3 <- lm(y3 ~ xA + xB + xC + xA:xB)
coef(reg.y3)

(Intercept) xA xB xC xA:xB
1.000 1.500 1.125 0.875 0.375
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Regression analysis with R

anova(reg.y3)

Analysis of Variance Table

Response: y3
Df Sum Sq Mean Sq F value Pr(>F)

xA 1 36.00 36.000 54.6207 1.376e-05 ***
xB 1 20.25 20.250 30.7241 0.0001746 ***
xC 1 12.25 12.250 18.5862 0.0012327 **
xA:xB 1 2.25 2.250 3.4138 0.0916999 .
Residuals 11 7.25 0.659
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual analysis
library(broom)
ggplot(augment(reg.y3)) +
geom_point(aes(.fitted, .resid), size = 2) +
labs(x = "fitted", y = "residuals")
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Residual analysis
ggplot(augment(reg.y3)) +
geom_point(aes(xA, .resid), size = 2) +
labs(x = "Carbonation", y = "residuals")
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Residual analysis
ggplot(augment(reg.y3)) +
geom_point(aes(xB, .resid), size = 2) +
labs(x = "Pressure", y = "residuals")
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Residual analysis
qqnorm(residuals(reg.y3))
qqline(residuals(reg.y3))
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Full model vs our model

dat2 <- data.frame(y=y3, x1=xA, x2=xB, x3=xC)
head(dat2)

y x1 x2 x3
1 -3 -1 -1 -1
2 0 1 -1 -1
3 -1 -1 1 -1
4 2 1 1 -1
5 -1 -1 -1 1
6 2 1 -1 1
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Full model vs our model
res2 <- lm(y~xA*xB*xC, data=dat2)
anova(res2)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

xA 1 36.00 36.000 57.6 6.368e-05 ***
xB 1 20.25 20.250 32.4 0.0004585 ***
xC 1 12.25 12.250 19.6 0.0022053 **
xA:xB 1 2.25 2.250 3.6 0.0943498 .
xA:xC 1 0.25 0.250 0.4 0.5447373
xB:xC 1 1.00 1.000 1.6 0.2415040
xA:xB:xC 1 1.00 1.000 1.6 0.2415040
Residuals 8 5.00 0.625
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Full model vs our model

res3 <- lm(y~xA+xB+xC+xA:xB, data=dat2)
anova(res3)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

xA 1 36.00 36.000 54.6207 1.376e-05 ***
xB 1 20.25 20.250 30.7241 0.0001746 ***
xC 1 12.25 12.250 18.5862 0.0012327 **
xA:xB 1 2.25 2.250 3.4138 0.0916999 .
Residuals 11 7.25 0.659
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Full model vs our model

anova(res3, res2)

Analysis of Variance Table

Model 1: y ~ xA + xB + xC + xA:xB
Model 2: y ~ xA * xB * xC
Res.Df RSS Df Sum of Sq F Pr(>F)

1 11 7.25
2 8 5.00 3 2.25 1.2 0.37

Md Rasel Biswas Chapter 6 75 / 126



Subsection 4

6.4 The general 2𝑘 design
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The general 2𝑘 design

The 2𝑘 factorial design is a design with 𝑘 factors each has two levels.

A statistical model for 2𝑘 design would include
▶ 𝑘 main effects
▶ (𝑘

2) two-factor interactions
▶ (𝑘

3) three-factor interactions
▶ …
▶ one 𝑘-factor interaction

For a 2𝑘 design, the complete model would contain 2𝑘 − 1 effects

The treatment combinations can be written in a standard order, e.g.

(1) 𝑎 𝑏 𝑎𝑏 𝑐 𝑎𝑐 𝑏𝑐 𝑎𝑏𝑐 𝑑 𝑎𝑑 ⋯
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The general 2𝑘 design

The complete model for 2𝑘 design with 𝑛 replications has
▶ 𝑛2𝑘 − 1 total degrees of freedom
▶ (𝑛2𝑘 − 1) − (2𝑘 − 1) = 2𝑘(𝑛 − 1) error degrees of freedom

For a 2𝑘 design, contrast for the effect 𝐴𝐵 ⋯ 𝐾 can be expressed as

Contrast𝐴𝐵⋯ = (𝑎 ± 1)(𝑏 ± 1) ⋯ (𝑘 ± 1)
▶ ordinary algebra is used with “1” being replaced by (1) in the final

expression.
▶ The sign in each set of parentheses is negative if the factor is included

in the effect and positive if the factor is not included.
E.g. for a 22 design, the contrast

𝐴 = (𝑎 − 1)(𝑏 + 1) = 𝑎𝑏 + 𝑎 − 𝑏 − (1)
𝐴𝐵 = (𝑎 − 1)(𝑏 − 1) = 𝑎𝑏 − 𝑎 − 𝑏 + (1)

Md Rasel Biswas Chapter 6 78 / 126



The general 2𝑘 design

Estimate of the contrast

𝐴𝐵 … 𝐾 = 2
𝑛2𝑘 [Contrast𝐴𝐵⋯𝐾]

Sums of squares

𝑆𝑆𝐴𝐵…𝐾 = 1
𝑛2𝑘 [Contrast𝐴𝐵⋯𝐾]2,

where 𝑛 is the number of replications.

Md Rasel Biswas Chapter 6 79 / 126



The general 2𝑘 design
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The general 2𝑘 design
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Subsection 5

6.5 A single replicate of the 2𝑘 design
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6.5 A single replicate of the 2𝑘 design

Total number of treatment combinations in a 2𝑘 factorial design
could be very large even for a moderate number of factors

For example, a 25 design has 32 treatment combinations, a 26 design
has 64 treatment combinations, and so on

In many practical situations, the available resources may only allow a
single replicate of the design to be run

Single replicate may cause problem if the response is highly variable

A single replicate of a 2𝑘 design is sometime called an unreplicated
factorial
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6.5 A single replicate of the 2𝑘 design

With only one replicate, pure error cannot be estimated, so commonly
used analysis of variance cannot be performed

Two approaches are commonly used for analysing unreplicated
factorial design

1 Consider certain high-order interactions as negligible and combine
their mean squares to estimate the error.

▶ This approach is based on the assumption that the most systems is
dominated by some of the main effects and low-order interactions, and
most of the high-order interactions are negligible (sparsity of effects
principle)
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6.5 A single replicate of the 2𝑘 design

2 Higher-order interactions could be of interest, in that case polling
higher-order interactions to estimate the error variance is not
appropriate.

▶ In such case, normal probability plots of the effect estimates could be
of help. The negligible effects should be normally distributed with
mean 0 and variance 𝜎2 and will fall in a straight line on the plot. On
the other hand, significant effects will have nonzero means and will not
lie along the straight line.
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6.5 A single replicate of the 2𝑘 design

EXAMPLE 6.2
A chemical product is produced in a pressure vessel. A factorial
experiment is carried out in the pilot plant to study the factors thought to
influence the filtration rate of this product.
Four factors temperature (A), pressure (B), concentration of
formaldehyde (C), and stirring rate (D) are thought to be important for
the chemical product.
The design matrix and the response data obtained from a single replicate
of the 24 experiment are shown in Table 6.10.
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6.5 A single replicate of the 2𝑘 design
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6.5 A single replicate of the 2𝑘 design

We will begin the analysis of these data by constructing a normal
probability plot of the effect estimates.

▶ The table of plus and minus signs for the contrast constants for the 24

design are shown in Table 6.11.
▶ From these contrasts, we may estimate the 15 factorial effects and the

sums of squares shown in Table 6.12.
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6.5 A single replicate of the 2𝑘 design
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6.5 A single replicate of the 2𝑘 design
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6.5 A single replicate of the 2𝑘 design
df <- data.frame(
y = c(45, 71, 48, 65, 68, 60, 80, 65, 43, 100, 45, 104, 75, 86, 70, 96),
A = rep(c(-1, 1), times = 8),
B = rep(c(-1, 1), each = 2, times = 4),
C = rep(c(-1, 1), each = 4, times = 2),
D = rep(c(-1, 1), each = 8)

)
model <- lm(y ~ A * B * C * D, data = df)
dat6b <- tibble(
`Model terms` = c('A', 'B', 'C', 'D', 'AB', 'AC', 'BC',

'AD', 'BD', 'CD', 'ABC', 'ABD',
'ACD', 'BCD', 'ABCD'),

`Effect estimates` = coef(model)[-1] * 2,
SS = anova(model)$"Sum Sq"[1:15],
`Percentage contribution` = 100 * (SS / sum(SS))

)
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6.5 A single replicate of the 2𝑘 design
kableExtra::kable(dat6b, digits = 3, align = 'c')

Model terms Effect estimates SS Percentage contribution
A 21.625 1870.562 32.640
B 3.125 39.062 0.682
C 9.875 390.063 6.806
D 14.625 855.563 14.929
AB 0.125 0.062 0.001
AC -18.125 1314.062 22.929
BC 2.375 22.562 0.394
AD 16.625 1105.562 19.291
BD -0.375 0.563 0.010
CD -1.125 5.063 0.088
ABC 1.875 14.063 0.245
ABD 4.125 68.062 1.188
ACD -1.625 10.563 0.184
BCD -2.625 27.563 0.481
ABCD 1.375 7.563 0.132
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6.5 A single replicate of the 2𝑘 design

The important effects that emerge from this analysis are
▶ the main effects of 𝐴, 𝐶, and 𝐷 and
▶ the 𝐴𝐶 and 𝐴𝐷 interactions.
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6.5 A single replicate of the 2𝑘 design
library(ggDoE)
main_effects(df, response='y', exclude_vars = c('B'),

color_palette = 'viridis', n_columns=3)
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Figure 1: Main effect plots
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6.5 A single replicate of the 2𝑘 design

The main effects of A, C, and D are plotted in Figure. All three effects
are positive, and if we considered only these main effects, we would
run all three factors at the high level to maximize the filtration rate.

However, it is always necessary to examine any interactions that are
important. Remember that main effects do not have much meaning
when they are involved in significant interactions.
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6.5 A single replicate of the 2𝑘 design
p1=interaction_effects(df, response='y',exclude_vars=c('B','D'))
p2=interaction_effects(df, response='y',exclude_vars=c('B','C'))
gridExtra::grid.arrange(p1, p2, ncol = 2)
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Figure 2: Interaction plots
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6.5 A single replicate of the 2𝑘 design

The AC interaction indictates: the 𝐴 effect is very small when the 𝐶 is
at the high level and very large when the 𝐶 is at the low level, with the
best results obtained with low C and high A.

The AD interaction indicates: 𝐷 has little effect at low 𝐴 but a large
positive effect at high 𝐴.

Therefore, the best filtration rates would appear to be obtained when A
and D are at the high level and C is at the low level. This would allow the
reduction of the formaldehyde concentration to a lower level, another
objective of the experimenter.
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Design projection

Another interpretation of the effects in Figure 6.11 is possible

Because 𝐵 (pressure) is not significant and all interactions involving
𝐵 are negligible, we may discard 𝐵 from the experiment so that the
design becomes a 23 factorial in 𝐴, 𝐶, and 𝐷 with two replicates.

This is easily seen from examining only columns 𝐴, 𝐶, and 𝐷 in the
design matrix shown in Table 6.10 and noting that those columns
form two replicates of a 23 design.
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Design projection
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Design projection

The analysis of variance for the data using this simplifying assumption is
summarized in Table 6.13.

The conclusions that we would draw from this analysis are essentially
unchanged from those of Example 6.2.

Note that by projecting the single replicate of the 24 into a replicated 23 ,
we now have both an estimate of the 𝐴𝐶𝐷 interaction and an estimate of
error based on what is sometimes called hidden replication

In general, if we have a single replicate of a 2𝑘 design, and if ℎ(ℎ < 𝑘)
factors are negligible and can be dropped, then the original data
correspond to a full two-level factorial in the remaining 𝑘 − ℎ factors with
2ℎ replicates.
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Design projection
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The Half-Normal Plot of Effects

An alternative to the normal probability plot of the factor effects is
the half-normal plot.

This is a plot of the absolute value of the effect estimates against
their cumulative normal probabilities.

The straight line on the half-normal plot always passes through the
origin and should also pass close to the fiftieth percentile data value.
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The Half-Normal Plot of Effects
ggDoE::half_normal(model)
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Other Methods for Analyzing Unreplicated Factorials.

A widely used analysis procedure for an unreplicated two-level factorial
design is the normal (or half-normal) plot of the estimated factor effects.

However, unreplicated designs are so widely used in practice that many
formal analysis procedures have been proposed to overcome the
subjectivity of the normal probability plot.

Hamada and Balakrishnan (1998) compared some of these methods.

They found that the method proposed by Lenth (1989) has good
power to detect significant effects. It is also easy to implement, and
as a result it appears in several software packages for analyzing data
from unreplicated factorials.
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Subsection 6

6.6 Additional Examples of Unreplicated 2𝑘 Designs
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6.6 Additional Examples of Unreplicated 2𝑘 Designs

EXAMPLE 6.3: Data Transformation in a Factorial Design
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Subsection 7

6.7 2𝑘 Designs are Optimal Designs
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6.7 2𝑘 Designs are Optimal Designs
The model parameter regression coefficients (and effect estimates) from a 2𝑘 design are least
squares estimates. For a 22 model, the regression model is

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝜀

The four observations from a 22 design:

(1) = 𝛽0 + 𝛽1(−1) + 𝛽2(−1) + 𝛽12(−1)(−1) + 𝜀1
𝑎 = 𝛽0 + 𝛽1(1) + 𝛽2(−1) + 𝛽12(1)(−1) + 𝜀2
𝑏 = 𝛽0 + 𝛽1(−1) + 𝛽2(1) + 𝛽12(−1)(1) + 𝜀3
𝑎𝑏 = 𝛽0 + 𝛽1(1) + 𝛽2(1) + 𝛽12(1)(1) + 𝜀1

y = X𝛽 + 𝜀, y =
⎡⎢⎢
⎣

(1)
𝑎
𝑏

𝑎𝑏

⎤⎥⎥
⎦

, X =
⎡⎢⎢
⎣

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎤⎥⎥
⎦

, 𝛽 =
⎡⎢⎢
⎣

𝛽0
𝛽1
𝛽2
𝛽12

⎤⎥⎥
⎦

, 𝜀 =
⎡⎢⎢
⎣

𝜀1
𝜀2
𝜀3
𝜀4

⎤⎥⎥
⎦

Md Rasel Biswas Chapter 6 108 / 126



6.7 2𝑘 Designs are Optimal Designs

The least squares estimate of 𝛽 is given by:

̂𝛽 = (𝑋′𝑋)−1𝑋′𝑦

Since this is an orthogonal design, the 𝑋′𝑋 matrix is diagonal:

̂𝛽 =
⎡
⎢⎢
⎣

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

⎤
⎥⎥
⎦

−1

⎡
⎢⎢
⎣

(1) + 𝑎 + 𝑏 + 𝑎𝑏
𝑎 + 𝑎𝑏 − 𝑏 − (1)
𝑏 + 𝑎𝑏 − 𝑎 − (1)
(1) − 𝑎 − 𝑏 + 𝑎𝑏

⎤
⎥⎥
⎦
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6.7 2𝑘 Designs are Optimal Designs

With this, we obtain:

⎡
⎢⎢⎢
⎣

̂𝛽0
̂𝛽1
̂𝛽2
̂𝛽12

⎤
⎥⎥⎥
⎦

= 1
4I4

⎡
⎢⎢
⎣

(1) + 𝑎 + 𝑏 + 𝑎𝑏
𝑎 + 𝑎𝑏 − 𝑏 − (1)
𝑏 + 𝑎𝑏 − 𝑎 − (1)
(1) − 𝑎 − 𝑏 + 𝑎𝑏

⎤
⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

(1)+𝑎+𝑏+𝑎𝑏
4𝑎+𝑎𝑏−𝑏−(1)
4𝑏+𝑎𝑏−𝑎−(1)
4(1)−𝑎−𝑏+𝑎𝑏
4

⎤
⎥⎥⎥
⎦

The “usual” contrasts are shown in the matrix of 𝑋′𝑦.
The 𝑋′𝑋 matrix is diagonal as a consequence of the orthogonal
design.
The regression coefficient estimates are exactly half of the “usual”
effect estimates.
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6.7 2𝑘 Designs are Optimal Designs

The matrix (X’X) has some useful properties

𝑉 ( ̂𝛽) = 𝜎2 (diagonal element of (𝑋′𝑋)−1)

= 𝜎2

4 ⟶ Minimum possible value for a four-run design

|𝑋′𝑋| = 256 ⟶ Maximum possible value for a four-run design

Notice that these results depend on both the design you have chosen and
the model.
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6.7 2𝑘 Designs are Optimal Designs

It turns out that the volume of the joint confidence region that contains all
the model regression coefficients is inversely proportional to the square
root of the determinant of 𝑋′𝑋.

Therefore, to make this joint confidence region as small as possible, we
would want to choose a design that makes the determinant of 𝑋′𝑋 as
large as possible.

In general, a design that minimizes the variance of the model regression
coefficients (or maximize the determinant of 𝑋′𝑋) is called a 𝐷-optimal
design.

The 2𝑘 design is a 𝐷-optimal design for fitting the first-order model or the
first-order model with interaction.
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Subsection 8

6.8 The Addition of Center Points to the 2𝑘 Design
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6.8 The Addition of Center Points to the 2𝑘 Design

A potential concern in the use of two-level factorial designs is the
assumption of linearity in the factor effects.

First-order model (with interaction):

𝑦 = 𝛽0 +
𝑘

∑
𝑗=1

𝛽𝑗𝑥𝑗 + ∑ ∑
𝑖<𝑗

𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜖. (6.28)

is capable of representing some curvature in the response function.

Second-order model:

𝑦 = 𝛽0 +
𝑘

∑
𝑗=1

𝛽𝑗𝑥𝑗 + ∑
𝑖<𝑗

𝛽𝑖𝑗𝑥𝑖𝑥𝑗 +
𝑘

∑
𝑗=1

𝛽𝑖𝑗𝑥2
𝑗 + 𝜖 (6.29)

where 𝛽𝑗𝑗 represent pure Second-order or quadratic effects.
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6.8 The Addition of Center Points to the 2𝑘 Design

In running a two-level factorial experiment, we usually anticipate fitting the
first-order model in Equation 6.28, but we should be alert to the possibility
that the second-order model in Equation 6.29 is more appropriate.

There is a method of replicating certain points in a 2𝑘 factorial that will
provide protection against curvature from second-order effects as well as
allow an independent estimate of error to be obtained.

The method consists of adding center points to the 2𝑘 design. These
consist of 𝑛𝐶 replicates run at the points 𝑥𝑖 = 0(𝑖 = 1, 2, … , 𝑘).
One important reason for adding the replicate runs at the design center is
that center points do not affect the usual effect estimates in a 2𝑘 design.

When we add center points, we assume that the 𝑘 factors are
quantitative.
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6.8 The Addition of Center Points to the 2𝑘 Design
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6.8 The Addition of Center Points to the 2𝑘 Design

Let ̄𝑦𝐹 be the average of the 𝑛𝐹 runs at the four factorial points, and ̄𝑦𝐶
be the average of the 𝑛𝐶 runs at the center point.

̄𝑦𝐹 = ̄𝑦𝐶 → no “curvature”

𝐻0 ∶
𝑘

∑
𝑗=1

𝛽𝑗𝑗 = 0

𝐻1 ∶
𝑘

∑
𝑗=1

𝛽𝑗𝑗 ≠ 0

𝑆𝑆Pure quadratic = 𝑛𝐹 𝑛𝐶 ( ̄𝑦𝐹 − ̄𝑦𝐶)2

𝑛𝐹 + 𝑛𝐶
(6.30)

The sum of square has a single degree of freedom.
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6.8 The Addition of Center Points to the 2𝑘 Design

This sum of squares may be incorporated into the ANOVA and may be
compared to the error mean square to test for pure quadratic curvature.

Furthermore, if the factorial points in the design are unreplicated, one may
use the 𝑛𝐶 center points to construct an estimate of error with 𝑛𝐶 − 1
degrees of freedom.
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Example 6.7 (Extended 6.2)

We will illustrate the addition of center points to a 2𝑘 design by
reconsidering the pilot plant experiment in Example 6.2.

Recall that this is an unreplicated 24 design.

Refer to the original experiment shown in Table 6.10.
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Example 6.7 (Extended 6.2)
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Example 6.7 (Extended 6.2)

Suppose that four center points are added to this experiment, and at the
points 𝑥1 = 𝑥2 = 𝑥3 = 𝑥4 = 0 the four observed filtration rates were
73, 75, 66, and 69.

The average of these four center points is ̄𝑦𝐶 = 70.75
The average of the 16 factorial runs is ̄𝑦𝐹 = 70.06.

Since ̄𝑦𝐶 and ̄𝑦𝐹 are very similar, we suspect that there is no strong
curvature present.
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Example 6.7 (Extended 6.2)

The mean square for pure error is calculated from the center points as
follows:

𝑀𝑆𝐸 = 𝑆𝑆𝐸
𝑛𝐶 − 1 =

∑Center points (𝑦𝑖 − ̄𝑦𝑐)2

𝑛𝐶 − 1

= ∑4
𝑖=1 (𝑦𝑖 − 70.75)2

4 − 1 = 16.25
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Example 6.7 (Extended 6.2)

The difference ̄𝑦𝐹 − ̄𝑦𝐶 = 70.06 − 70.75 = −0.69 is used to compute the
pure quadratic (curvature) sum of squares from Equation 6.30 as follows:

𝑆𝑆Pure quadratic = 𝑛𝐹 𝑛𝐶 ( ̄𝑦𝐹 − ̄𝑦𝐶)2

𝑛𝐹 + 𝑛𝐶

= (16)(4)(−0.69)2

16 + 4 = 1.51
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Example 6.7 (Extended 6.2)
The upper portion of the Table 6.24 shows ANOVA for the full model.
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Example 6.7 (Extended 6.2)

The ANOVA indicates that there is no evidence of second-order curvature
in the response over the region of exploration (p-value=0.7802).

That is, the null hypothesis 𝐻0 ∶ 𝛽11 + 𝛽22+ 𝛽33 + 𝛽44 = 0 cannot be
rejected.

The significant effects are 𝐴, 𝐶, 𝐷, 𝐴𝐶, and 𝐴𝐷.
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Example 6.7 (Extended 6.2)
The ANOVA for the reduced model is shown in the lower portion of Table
6.24.

The results of this analysis agree with those from Example 6.2, where the
important effects were isolated using the normal probability plotting
method.
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