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8.1 Introduction

As the number of factors in a 2𝑘 factorial design increases, the
number of runs required for a complete replicate of the design rapidly
outgrows the resources of most experimenters.

For example, a complete replicate of the 26 design requires 64 runs.
In this design only 6 of the 63 degrees of freedom correspond to main
effects, and only 15 degrees of freedom correspond to two-factor
interactions.

There are only 21 degrees of freedom associated with effects that are
likely to be of major interest. The remaining 42 degrees of freedom
are associated with three-factor and higher interactions.
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8.1 Introduction

If the experimenter can reasonably assume that certain high-order
interactions are negligible, information on the main effects and
low-order interactions may be obtained by running only a fraction of
the complete factorial experiment.

A major use of fractional factorials is in screening experiments —
experiments in which many factors are considered and the objective is
to identify those factors (if any) that have large effects.

The factors identified as important are then investigated more
thoroughly in subsequent experiments.
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8.1 Introduction

The successful use of fractional factorial designs is based on three key
ideas:

1 The sparsity of effects principle: when there are several variables,
the system will be driven primarily by some of the main effects and
low order interactions

2 The projection property: Fractional factorial designs can be
projected into larger designs in the subset of significant factors

3 Sequential experimentation: It is possible to combine the runs of
two or more fractional factorials to assemble sequentially a larger
design to estimate the factor effects and interactions of interest
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Subsection 2

8.2 The one-half fraction of the 2𝑘 design
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8.2 The one-half fraction of the 2𝑘 design

Consider a situation in which three factors, each at two levels, are of
interest, but the experimenters cannot afford to run all 23 = 8
treatment combinations.

They can, however, afford four runs.

This suggests a one-half fraction of a 23 design.

Because the design contains 23−1 = 4 treatment combinations, a
one-half fraction of the 23 design is often called a 23−1 design.
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8.2 The one-half fraction of the 2𝑘 design

The four treatment combinations can be selected according to the
plus sign of a factorial effect, which is known as a generator or a
word.

Thus, if 𝐴𝐵𝐶 is the generator of the 23−1 design, then we select the
four treatment combinations 𝑎, 𝑏, 𝑐, and 𝑎𝑏𝑐 as our one-half fraction.

We call 𝐼 = 𝐴𝐵𝐶 as the defining relation for the design.

In general, defining relation will always be the set of all columns that
are equal to the identity column 𝐼 .
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8.2 The one-half fraction of the 2𝑘 design
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8.2 The one-half fraction of the 2𝑘 design
The estimates of the main effects of 𝐴, 𝐵, and 𝐶 are

[𝐴] = 1
2(𝑎 − 𝑏 − 𝑐 + 𝑎𝑏𝑐)

[𝐵] = 1
2(−𝑎 + 𝑏 − 𝑐 + 𝑎𝑏𝑐)

[𝐶] = 1
2(−𝑎 − 𝑏 + 𝑐 + 𝑎𝑏𝑐)

The estimates of the interactions 𝐴𝐵, 𝐵𝐶, and 𝐴𝐶 are

[𝐵𝐶] = 1
2(𝑎 − 𝑏 − 𝑐 + 𝑎𝑏𝑐)

[𝐴𝐶] = 1
2(−𝑎 + 𝑏 − 𝑐 + 𝑎𝑏𝑐)

[𝐴𝐵] = 1
2(−𝑎 − 𝑏 + 𝑐 + 𝑎𝑏𝑐)
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8.2 The one-half fraction of the 2𝑘 design

Thus, [𝐴] = [𝐵𝐶], [𝐵] = [𝐴𝐶], and [𝐶] = [𝐴𝐵] consequently, it is
impossible to differentiate between 𝐴 and 𝐵𝐶, 𝐵 and 𝐴𝐶, and 𝐶
and 𝐴𝐵.

In fact, when we estimate 𝐴, 𝐵, and 𝐶 we are really estimating
𝐴 + 𝐵𝐶, 𝐵 + 𝐴𝐶, and 𝐶 + 𝐴𝐵. Two or more effects that have this
property are called aliases.

In our example, 𝐴 and 𝐵𝐶 are aliases, 𝐵 and 𝐴𝐶 are aliases, and 𝐶
and 𝐴𝐵 are aliases.
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8.2 The one-half fraction of the 2𝑘 design

We indicate this by the notation [𝐴] → 𝐴 + 𝐵𝐶, [𝐵] → 𝐵 + 𝐴𝐶,
and [𝐶] → 𝐶 + 𝐴𝐵.

The alias structure for this design may be easily determined by using
the defining relation 𝐼 = 𝐴𝐵𝐶.

Multiplying any column (or effect) by the defining relation yields the
aliases for that column (or effect).

In our example, this yields that the alias of 𝐴 is 𝐵𝐶.

𝐴.𝐼 = 𝐴.𝐴𝐵𝐶 = 𝐴2𝐵𝐶 = 𝐵𝐶

Similarly, we find that (B and AC) and (C and AB) are aliases
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8.2 The one-half fraction of the 2𝑘 design

This one-half fraction, with 𝐼 = +𝐴𝐵𝐶, is usually called the
principal fraction.

Now suppose that we had chosen the other one-half fraction, that is,
the treatment combinations associated with minus in the 𝐴𝐵𝐶
column, known as the complementary or alternate fraction.

The defining relation for this design is 𝐼 = −𝐴𝐵𝐶.

The alternate fraction gives us

[𝐴]′ → 𝐴 − 𝐵𝐶
[𝐵]′ → 𝐵 − 𝐴𝐶
[𝐶]′ → 𝐶 − 𝐴𝐵
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8.2 The one-half fraction of the 2𝑘 design

Thus, when we estimate 𝐴, 𝐵, and 𝐶 with this particular fraction, we are
really estimating 𝐴 − 𝐵𝐶, 𝐵 − 𝐴𝐶, and 𝐶 − 𝐴𝐵.

In practice, it does not matter which fraction is actually used. The two
one-half fractions form a complete 23 design.

Suppose that after running one of the one-half fractions of the 23 design,
the other fraction was also run. Thus, all eight runs associated with the
full 23 are now available.
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8.2 The one-half fraction of the 2𝑘 design

We may now obtain de-aliased estimates of all the effects by
analyzing the eight runs as a full 23 design in two blocks of four runs
each.

This could also be done by adding and subtracting the linear
combination of effects from the two individual fractions.

1
2 ([𝐴] + [𝐴]′) = 1

2(𝐴 + 𝐵𝐶 + 𝐴 − 𝐵𝐶) → 𝐴
1
2 ([𝐴] − [𝐴]′) = 1

2(𝐴 + 𝐵𝐶 − 𝐴 + 𝐵𝐶) → 𝐵𝐶
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8.2 The one-half fraction of the 2𝑘 design

Thus, for all three pairs of linear combinations, we would obtain the
following:

Furthermore, by assembling the full 23 in this fashion with 𝐼 = +𝐴𝐵𝐶 in
the first group of runs and 𝐼 = −𝐴𝐵𝐶 in the second, the 23 confounds
𝐴𝐵𝐶 with blocks
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Design resolution

The preceding 23 − 1 design is called a resolution III design

In such a design, main effects are aliased with two-factor interactions.

A design is of resolution 𝑅 if no 𝑝-factor effect is aliased with
another effect containing less than 𝑅 − 𝑝 factors

We usually employ a Roman numeral subscript to denote design
resolution;

Thus, the one-half fraction of the 23 design with the defining relation
𝐼 = 𝐴𝐵𝐶 (or 𝐼 = −𝐴𝐵𝐶) is a 23−1

𝐼𝐼𝐼 design.
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Design resolution

Design resolutions describe how much the effects in a fractional
factorial design are aliased with other effects.

When we do a fractional factorial design, one or more of the effects
are confounded, meaning they cannot be estimated separately from
each other.

Usually, we want to use a fractional factorial design with the highest
possible resolution.

Md Rasel Biswas Chapter 8 20 / 95



Design resolution

Resolution III designs.

These are designs in which no main effects are aliased with any other
main effect, but main effects are aliased with two-factor interactions
and some two-factor interactions may be aliased with each other.

The 23−1 design in Table 8.1 is of resolution III (23−1
𝐼𝐼𝐼 )
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Design resolution

Resolution IV design.

These are designs in which no main effect is aliased with any other
main effect or with any two-factor interaction, but two-factor
interactions are aliased with each other.

A 24−1 design with 𝐼 = 𝐴𝐵𝐶𝐷 is a resolution 𝐼𝑉 design (24−1
𝐼𝑉 )
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Design resolution

Resolution V design.

These are designs in which no main effect or two-factor interaction is
aliased with any other main effect or two-factor interaction, but
two-factor interactions are aliased with three-factor interactions.

A 25−1 design with 𝐼 = 𝐴𝐵𝐶𝐷𝐸 is a resolution 𝑉 design (25−1
𝑉 )
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Design resolution

In general, the resolution of a two-level fractional factorial design is
equal to the shortest number of letters in any word in the defining
relation

Higher the resolution better the design (why?)
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Design resolution

We never want a resolution II design, because a design would alias
two main effects. Thus minimum acceptable resolution in III.

Resolution III designs have some main effects aliased to two-factor
interactions. If we believe that only main effects are present and all
interactions are negligible, then a resolution III design is sufficient for
estimating main effects.

Resolution III designs are called main effects design for this reason.

If we believe that some two factor interactions may be non negligible
but all three way and higher interactions are negligible then a
resolution IV is sufficient for main effects.

Low resolution fractional factorials are often used as screening
designs, where we are trying to screen many factors to see if any of
them has an effect. This is usually an early stage of investigation.
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Subsection 3

Construction and Analysis of the One-Half Fraction
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Construction and Analysis of the One-Half Fraction

A one-half fraction of the 2𝑘 design of the highest resolution may be
constructed by

writing down a basic design consisting of the runs for a full 2𝑘−1

factorial and

then adding the the 𝑘th factor by identifying its plus and minus levels
with the plus and minus signs of the highest order interaction
𝐴𝐵𝐶 ⋯ (𝐾 − 1)
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Constructing one-half fractions

E.g. the 23−1
𝐼𝐼𝐼 fractional factorial design of the highest resolution can

be obtained by writing down the full 22 factorial as the basic design
and then equating the factor 𝐶 to 𝐴𝐵
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Constructing one-half fractions

Note that any interaction effect could be used to generate the column
for the 𝑘th factor.

However, using any effect other than 𝐴𝐵𝐶….(K-1) will not produce a
design of the highest possible resolution.

Another way to view the construction of a one-half fraction is to
partition the runs into two blocks with the highest order interaction
𝐴𝐵𝐶 … 𝐾 confounded. Each block is a 2𝑘−1 fractional factorial
design of the highest resolution.
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Constructing one-half fractions

Sequences of fractional factorials

Fractional factorial designs could be less expensive and efficient in
experimentation, if the runs can be made sequentially
If the interest is in investigating 𝑘 = 4 factors (i.e. 24 = 16 runs)
then it is preferable to run a 24−1

𝐼𝑉 fractional design, analyze the
results, and then decide on the best set of runs to perform the next.
If necessary we can always run the alternate fraction and get the
complete 24 design, where both half-fractions are considered as blocks
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Constructing one-half fractions

Projection of Fractions into Factorials
Any fractional factorial design of resolution 𝑅 contains complete
factorial designs (possibly replicated factorials) in any subset of
𝑅 − 1 factors.
This is an important and useful concept
Because the maximum possible resolution of a one-half fraction of the
2𝑘 design is 𝑅 = 𝑘, every 2𝑘−1 design will project into a full factorial
in any (𝑘 − 1) of the original 𝑘 factors.
Furthermore, a 2𝑘−1 design may be projected into two replicates of a
full factorial in any subset of 𝑘 − 2 factors, four replicates of a full
factorial in any subset of 𝑘 − 3 factors, and so on.
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EXAMPLE 8.1

Consider the filtration rate experiment in Example 6.2. The original
design is a single replicate of the 24 design.

In that example, we found that the main effects 𝐴, 𝐶, and 𝐷 and the
interactions 𝐴𝐶 and 𝐴𝐷 were different from zero.

We will now return to this experiment and simulate what would have
happened if a half-fraction of the 24 design had been run instead of
the full factorial.
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EXAMPLE 8.1
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EXAMPLE 8.1
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EXAMPLE 8.1

We will use the 24−1 design with 𝐼 = 𝐴𝐵𝐶𝐷.
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EXAMPLE 8.1

Using the defining relation, we note that each main effect is aliased
with a three-factor interaction; that is,
𝐴 = 𝐴2𝐵𝐶𝐷 = 𝐵𝐶𝐷, 𝐵 = 𝐴𝐵2𝐶𝐷 = 𝐴𝐶𝐷, 𝐶 = 𝐴𝐵𝐶2𝐷 =
𝐴𝐵𝐷, and 𝐷 = 𝐴𝐵𝐶𝐷2 = 𝐴𝐵𝐶.

Furthermore, every two-factor interaction is aliased with another
two-factor interaction. These alias relationships are
𝐴𝐵 = 𝐶𝐷, 𝐴𝐶 = 𝐵𝐷, and 𝐵𝐶 = 𝐴𝐷.

The four main effects plus the three two-factor interaction alias pairs
account for the seven degrees of freedom for the design.
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EXAMPLE 8.1

[𝐴] =1
4(−45 + 100 − 45 + 65 − 75

+ 60 − 80 + 96) = 19.00 → 𝐴 + 𝐵𝐶𝐷

[𝐴𝐵] =1
4(45 − 100 − 45 + 65 + 75 − 60 − 80 + 96)

= − 1.00 → 𝐴𝐵 + 𝐶𝐷
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EXAMPLE 8.1
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EXAMPLE 8.1

Because factor B is not significant, we may drop it from consideration.
Consequently, we may project this design into a single replicate of the
23 design in factors 𝐴, 𝐶, and 𝐷.

Based on the above analysis, we can now obtain a model to predict
filtration rate over the experimental region. This model is

̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽3𝑥3 + ̂𝛽4𝑥4 + ̂𝛽13𝑥1𝑥3 + ̂𝛽14𝑥1𝑥4

̂𝑦 =70.75 + (19.00
2 ) 𝑥1 + (14.00

2 ) 𝑥3 + (16.50
2 ) 𝑥4

+ (−18.50
2 ) 𝑥1𝑥3 + (19.00

2 ) 𝑥1𝑥4
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EXAMPLE 8.1

There are two large effects associated with two-factor interactions,
𝐴𝐶 + 𝐵𝐷 and 𝐴𝐷 + 𝐵𝐶.

In Example 8.2, we used the fact that the main effect of 𝐵 was
negligible to tentatively conclude that the important interactions were
𝐴𝐶 and 𝐴𝐷.

However, we can always isolate the significant interaction by running
the alternate fraction, given by 𝐼 = −𝐴𝐵𝐶𝐷.
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EXAMPLE 8.1
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EXAMPLE 8.1
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EXAMPLE 8.1
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Subsection 4

8.3 The one-quarter fraction of the 2𝑘 design
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8.3 The one-quarter fraction of the 2𝑘 design

One-quarter fraction of the 2𝑘 design could be useful when the
number of factors is large.

This design contains 2𝑘−2 runs and is usually called a 2𝑘−2 fractional
factorial.

The construction of the 2𝑘−2 fractional factorial design requires to
write down the basic design with 𝑘 − 2 factors first and then two
additional columns are constructed from appropriately chosen
interactions involving the first 𝑘 − 2 factors.
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8.3 The one-quarter fraction of the 2𝑘 design

The one-quarter fraction of the 2𝑘 design has two generators, if 𝑃
and 𝑄 are the two generators then their generalized interaction 𝑃𝑄
also acts as a generator

Complete defining relation is 𝐼 = 𝑃 = 𝑄 = 𝑃𝑄
As an example, consider 26−2 design with 𝐼 = 𝐴𝐵𝐶𝐸 and
𝐼 = 𝐵𝐶𝐷𝐹 as the design generators

▶ The complete defining relation for this design is
𝐼 = 𝐴𝐵𝐶𝐸 = 𝐵𝐶𝐷𝐹 = 𝐴𝐷𝐸𝐹(𝐴𝐵𝐶𝐸 × 𝐵𝐶𝐷𝐹)

▶ This 26−2 design is a resolution 𝐼𝑉 design, why?
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8.3 The one-quarter fraction of the 2𝑘 design

For the 26−2 design with 𝐼 = 𝐴𝐵𝐶𝐸 = 𝐵𝐶𝐷𝐹 = 𝐴𝐷𝐸𝐹 , the main
effects are aliased with two- and five-factor interactions, e.g.

𝐴(𝐼) = 𝐴(𝐴𝐵𝐶𝐸) = 𝐴(𝐵𝐶𝐷𝐹) = 𝐴(𝐴𝐷𝐸𝐹)
𝐴 = 𝐵𝐶𝐸 = 𝐴𝐵𝐶𝐷𝐹 = 𝐷𝐸𝐹

When we estimate the main effect of 𝐴, we actually estimate
𝐴 + 𝐵𝐶𝐸 + 𝐷𝐸𝐹 + 𝐴𝐵𝐶𝐷𝐹
Similarly, when we estimate 2-factor interaction 𝐴𝐵, we actually
estimate 𝐴𝐵 + 𝐶𝐸 + 𝐴𝐶𝐷𝐹 + 𝐵𝐷𝐸𝐹
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8.3 The one-quarter fraction of the 2𝑘 design

The complete alias structure of this design is
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8.3 The one-quarter fraction of the 2𝑘 design

To construct the design, first write down the basic design, which
consists of the 16 runs for a full 26−2 = 24 design in 𝐴, 𝐵, 𝐶, and 𝐷.

Then the two factors 𝐸 and 𝐹 are added by associating their plus and
minus levels with the plus and minus signs of the interactions 𝐴𝐵𝐶
and 𝐵𝐶𝐷, respectively. This procedure is shown below
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8.3 The one-quarter fraction of the 2𝑘 design

Md Rasel Biswas Chapter 8 50 / 95



8.3 The one-quarter fraction of the 2𝑘 design

Another way to construct this design is to derive the four blocks of
the 26 design with 𝐴𝐵𝐶𝐸 and 𝐵𝐶𝐷𝐹 confounded and then choose
the block with treatment combinations that are positive on 𝐴𝐵𝐶𝐸
and 𝐵𝐶𝐷𝐹 .

This would be a 26−2 fractional factorial with generating relations
𝐼 = 𝐴𝐵𝐶𝐸 and 𝐼 = 𝐵𝐶𝐷𝐹 , and because both generators 𝐴𝐵𝐶𝐸
and 𝐵𝐶𝐷𝐹 are positive, this is the principal fraction.
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8.3 The one-quarter fraction of the 2𝑘 design

For this 26−2 design, there are three alternate fractions, which are

𝐼 = 𝐴𝐵𝐶𝐸, 𝐼 = −𝐵𝐶𝐷𝐹;
𝐼 = −𝐴𝐵𝐶𝐸, 𝐼 = 𝐵𝐶𝐷𝐹; and
𝐼 = −𝐴𝐵𝐶𝐸, 𝐼 = −𝐵𝐶𝐷𝐹
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EXAMPLE 8.4

A quality improvement team has decided to use a designed experiment to
study the injection molding process so that shrinkage can be reduced. The
team decides to investigate six factors Mold temperature (A), Screw speed
(B), Holding time (C), Cycle time (D), Gate size (E), and holding pressure
(F) - each at two levels.

The objective of this experiment is of learning how each factor affects
shrinkage and also, something about how the factors interact. The team
decides to use the 16-run two-level fractional factorial design.
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EXAMPLE 8.4
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EXAMPLE 8.4
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EXAMPLE 8.4

The only large effects are A (mold temperature), B (screw speed), and the
AB interaction

Md Rasel Biswas Chapter 8 56 / 95



EXAMPLE 8.4
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EXAMPLE 8.4
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EXAMPLE 8.4

The plot of the AB interaction shows that the process is very
insensitive to temperature if the screw speed is at the low level but
very sensitive to temperature if the screw speed is at the high level.

Based on this initial analysis, the team decides to set both the mold
temperature and the screw speed at the low level
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Subsection 5

8.4 The general 2𝑘−𝑝 fractional factorial design
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8.4 The general 2𝑘−𝑝 fractional factorial design

A 2𝑘 fractional design containing 2𝑘−𝑝 runs is called 1/2𝑝 fraction of
the 2𝑘 design or 2𝑘−𝑝 fractional factorial design

These designs require the selection of 𝑝 independent generators and
the corresponding defining relation consists of the initially chosen 𝑝
generators and their 2𝑝 − 𝑝 − 1 generalized interactions

The alias structure can be found by multiplying each effect column by
the defining relation and generators should be chosen carefully so that
effects of potential interest are not aliased with each other, and each
effect will have 2𝑝 − 1 aliases

For moderately large values of 𝑘, we usually assume higher order
interactions (say, third- or fourth-order and higher) to be negligible,
and this greatly simplifies the alias structure.
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8.4 The general 2𝑘−𝑝 fractional factorial design

It is important to select the 𝑝 generators for a 2𝑘−𝑝 fractional factorial
design in a way that we obtain the best possible alias relationships

A reasonable criterion is to select the generators such that the
resulting 2𝑘−𝑝 design has the highest possible resolution, e.g. consider
a 26−2 design

Defining relation 𝐼 = 𝐴𝐵𝐶𝐸 = 𝐴𝐵𝐶𝐷𝐹 → Resolution III

Defining relation 𝐼 = 𝐴𝐵𝐶𝐸 = 𝐵𝐶𝐷𝐹 → Resolution IV
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8.4 The general 2𝑘−𝑝 fractional factorial design

Sometimes resolution alone is insufficient to distinguish between
designs. For example, consider the three 2𝐼𝑉

7−2 designs, which are
based on different defining relations, but have the equal resolution
𝐼𝑉 .

Sometimes resolution alone is insufficient to distinguish between
designs. consider the three 2𝐼𝑉

7−2 designs given below
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8.4 The general 2𝑘−𝑝 fractional factorial design
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8.4 The general 2𝑘−𝑝 fractional factorial design

All of these designs are of resolution IV, but they have rather different
alias structures (we have assumed that three-factor and higher
interactions are negligible) with respect to the two-factor interactions.

Clearly, design A has more extensive aliasing and design 𝐶 the least,
so design 𝐶 would be the best choice for a 2𝐼𝑉

7−2.

The three word lengths in design A are all 4; that is, the word length
pattern is {4, 4, 4}.
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8.4 The general 2𝑘−𝑝 fractional factorial design

For design 𝐵 it is {4, 4, 6}, and for design 𝐶 it is {4, 5, 5}
Notice that the defining relation for design 𝐶 has only one four-letter
word, whereas the other designs have two or three.

Thus, design 𝐶 minimizes the number of words in the defining
relation that are of minimum length. We call such a design a
minimum aberration design.
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8.4 The general 2𝑘−𝑝 fractional factorial design

Minimizing aberration in a design of resolution 𝑅 ensures that the design
has the minimum number of main effects aliased with interactions of order
𝑅 − 1, the minimum number of two-factor interactions aliased with
interactions of order 𝑅 − 2, and so forth.

Table 8.14 presents a selection of 2𝑘−𝑝 fractional factorial designs for
𝑘 ≤ 15 factors and up to 𝑛 ≤ 128 runs.

The suggested generators in this table will result in a design of the highest
possible resolution. These are also the minimum aberration designs.
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8.4 The general 2𝑘−𝑝 fractional factorial design
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8.4 The general 2𝑘−𝑝 fractional factorial design

The alias relationships for all of the designs in Table 8.14 for which
𝑛 ≤ 64 are given in Appendix Table X(a-w).

The alias relationships presented in this table focus on main effects and
two- and three-factor interactions. The complete defining relation is given
for each design.

This appendix table makes it very easy to select a design of sufficient
resolution to ensure that any interactions of potential interest can be
estimated.
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Analysis of 2𝑘−𝑝 fractional factorials

The 𝑖th effect is estimated by

𝑙𝑖 = contrast𝑖
(𝑁/2) ,

where contrast𝑖 can be found from the plus and minus sign of the
column 𝑖 and 𝑁 = 2𝑘−𝑝 is the total number of observations

The 2𝑘−𝑝 design allows only 2𝑘−𝑝 − 1 effects (and their aliases) to be
estimated
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Exercise 8.12.

An article in Industrial and Engineering Chemistry (“More on Planning
Experiments to Increase Research Efficiency,” 1970, pp. 60-65) uses a 25−2

design to investigate the effect of 𝐴 = condensation temperature, 𝐵 =
amount of material 1, 𝐶 = solvent volume, 𝐷 = condensation time, and
𝐸 = amount of material 2 on yield. The results obtained are as Follows:

𝑒 = 23.2 𝑎𝑑 = 16.9 𝑐𝑑 = 23.8 𝑏𝑑𝑒 = 16.8
𝑎𝑏 = 15.5 𝑏𝑐 = 16.2 𝑎𝑐𝑒 = 23.4 abcde = 18.1

(a) Verify that the design generators used were I = 𝐴𝐶𝐸 and 𝐼 = 𝐵𝐷𝐸.
(b) Write down the complete defining relation and the aliases for this

design.
(c) Estimate the main effects.

Md Rasel Biswas Chapter 8 71 / 95



Exercise 8.12.

(d) Prepare an analysis of variance table. Verify that the AB and AD
interactions are available to use as error.

(e) Plot the residuals versus the fitted values. Comment on the results.
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Subsection 6

Blocking Fractional Factorials
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Blocking Fractional Factorials

Occasionally, a fractional factorial design requires so many runs that
all of them cannot be made under homogeneous conditions.

In these situations, fractional factorials may be confounded in blocks.

Appendix Table X contains recommended blocking arrangements for
many of the fractional factorial designs in Table 8.14. The minimum
block size for these designs is eight runs
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Blocking Fractional Factorials

In assigning fractional factorials into blocks, we need to be careful
about the effects to be confounded with blocks

The 26−2
𝐼𝑉 design with 𝐼 = 𝐴𝐵𝐶𝐸 = 𝐵𝐶𝐷𝐹 = 𝐴𝐷𝐸𝐹 is

(1), 𝑑𝑓, 𝑐𝑒𝑓, 𝑏𝑒𝑓, 𝑎, 𝑎𝑏𝑒𝑓, 𝑎𝑐𝑓, 𝑏𝑐,
𝑎𝑑𝑒𝑓, 𝑏𝑑𝑒, 𝑐𝑑𝑒, 𝑎𝑏𝑐𝑒, 𝑎𝑏𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑𝑓, 𝑎𝑏𝑐𝑑𝑒𝑓,

This fractional design contains 16 treatment combinations.

We want to conduct the experiment into two blocks. Which effect
should we select to be confounded with blocks?
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Blocking Fractional Factorials

In selecting an interaction to confound with blocks, we note from
examining the alias structure in Appendix Table IX(f) that there are
two alias sets involving only three-factor interactions.

The table suggests selecting ABD (and its aliases) to be confounded
with blocks.
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Blocking Fractional Factorials
Assume the effect 𝐴𝐵𝐷 confounded with blocks, so the defining
contrast 𝐿 = 𝑥1 + 𝑥2 + 𝑥4 = 0 (mod2)

(1), 𝑑𝑓, 𝑐𝑒𝑓, 𝑏𝑒𝑓, 𝑎, 𝑎𝑏𝑒𝑓, 𝑎𝑐𝑓, 𝑏𝑐,
𝑎𝑑𝑒𝑓, 𝑏𝑑𝑒, 𝑐𝑑𝑒, 𝑎𝑏𝑐𝑒, 𝑎𝑏𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑𝑓, 𝑎𝑏𝑐𝑑𝑒𝑓,

Block-1 (𝐿 = 0)

(1), 𝑎𝑏𝑒𝑓, 𝑎𝑑𝑒𝑓, 𝑏𝑑𝑒
𝑎𝑏𝑐𝑒, 𝑎𝑐𝑑, 𝑏𝑐𝑑𝑓, 𝑎𝑏𝑐𝑑𝑒𝑓

Block-2 (𝐿 = 1)

𝑑𝑓, 𝑐𝑒𝑓, 𝑏𝑒𝑓, 𝑎, 𝑎𝑐𝑓,
𝑏𝑐, 𝑐𝑑𝑒, 𝑎𝑏𝑑

Notice that the principal block contains those treatment combinations
that have an even number of letters in common with ABD.
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Example 8.6

A five-axis CNC machine is used to produce an impeller for a jet turbine
engine. The blade profiles are an important quality characteristic.

Specifically, the deviation of the blade profile from the profile specified on
the engineering drawing is of interest.

An experiment is run to determine which machine parameters affect profile
deviation.
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Example 8.6

The eight factors selected for the design are as follows:

𝐴 = x-Axis shift
𝐵 = y-Axis shift
𝐶 = z-Axis shift
𝐷 = Tool supplier
𝐸 = a-Axis shift
𝐹 = Spindle speed (%)
𝐺 = Fixture height
𝐻 = Feed rate (%)
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Example 8.6

The profile deviation is measured using a coordinate measuring machine,
and the standard deviation of the difference between the actual profile and
the specified profile is used as the response variable.

The machine has four spindles. Because there may be differences in the
spindles, the process engineers feel that the spindles should be treated as
blocks.
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Example 8.6
The engineers feel confident that three-factor and higher interactions are
not too important, but they are reluctant to ignore the two-factor
interactions.

From Table 8.14, two designs initially appear appropriate: the 28−4
𝐼𝑉 design

with 16 runs and the 28−3
𝐼𝑉 design with 32 runs. The experimenters decide

to use the 28−3
𝐼𝑉 design in four blocks.
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Example 8.6
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Example 8.6
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Example 8.6

Md Rasel Biswas Chapter 8 84 / 95



Example 8.6

Because the response variable is a standard deviation, it is often best to
perform the analysis following a log transformation.
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Example 8.6
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Example 8.6
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Example 8.6

Suppose that process knowledge suggests that the appropriate interaction
is likely to be AD.

Following table shows the resulting analysis of variance for the model with
factors A, B, D, and AD (factor D was included to preserve the hierarchy
principle).

Notice that the block effect is small, suggesting that the machine spindles
are not very different.
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Example 8.6
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Example 8.6
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Example 8.6
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Example 8.6

Normal probability plot of the residuals is suggestive of slightly heavier
than normal tails, so possibly other transformations should be considered.

The 𝐴𝐷 interaction plot shows that running 𝐴 at the low level ( 0 offset)
and buying tools from supplier 1 gives the best results.

The projection of this design into four replicates of a 23 design in factors
𝐴, 𝐵, and 𝐷 is shown below.
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Example 8.6

The figure indicates
that the best combination of operating conditions is A at the low level (0
offset), B at the high level (0.015 in offset), and D at the low level (tool
supplier 1).
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Exercise 8.45
Consider the design:
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Exercise 8.45

(a) What is the generator for column E?
(b) If 𝐴𝐵𝐶 is confounded with blocks, run 1 above goes in the block —-.

Answer either + or −.
(c) What is the resolution of this design?
(d) Find the estimates of the main effects.
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