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Section 1

8. Two-Level Fractional Factorial Designs
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Subsection 1

8.1 Introduction
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8.1 Introduction

@ As the number of factors in a 2" factorial design increases, the
number of runs required for a complete replicate of the design rapidly
outgrows the resources of most experimenters.

e For example, a complete replicate of the 2% design requires 64 runs.
In this design only 6 of the 63 degrees of freedom correspond to main
effects, and only 15 degrees of freedom correspond to two-factor
interactions.

@ There are only 21 degrees of freedom associated with effects that are
likely to be of major interest. The remaining 42 degrees of freedom
are associated with three-factor and higher interactions.
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8.1 Introduction

o If the experimenter can reasonably assume that certain high-order
interactions are negligible, information on the main effects and
low-order interactions may be obtained by running only a fraction of
the complete factorial experiment.

@ A major use of fractional factorials is in screening experiments —
experiments in which many factors are considered and the objective is
to identify those factors (if any) that have large effects.

@ The factors identified as important are then investigated more
thoroughly in subsequent experiments.
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8.1 Introduction

The successful use of fractional factorial designs is based on three key
ideas:

@ The sparsity of effects principle: when there are several variables,
the system will be driven primarily by some of the main effects and
low order interactions

@ The projection property: Fractional factorial designs can be
projected into larger designs in the subset of significant factors

© Sequential experimentation: It is possible to combine the runs of
two or more fractional factorials to assemble sequentially a larger
design to estimate the factor effects and interactions of interest
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Subsection 2

8.2 The one-half fraction of the 2* design
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8.2 The one-half fraction of the 2* design

@ Consider a situation in which three factors, each at two levels, are of
interest, but the experimenters cannot afford to run all 23 =8
treatment combinations.

@ They can, however, afford four runs.
@ This suggests a one-half fraction of a 23 design.

@ Because the design contains 237! = 4 treatment combinations, a

one-half fraction of the 23 design is often called a 23! design.
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8.2 The one-half fraction of the 2* design

@ The four treatment combinations can be selected according to the
plus sign of a factorial effect, which is known as a generator or a
word.

e Thus, if ABC is the generator of the 2371 design, then we select the
four treatment combinations a, b, ¢, and abc as our one-half fraction.

@ We call I = ABC' as the defining relation for the design.

@ In general, defining relation will always be the set of all columns that
are equal to the identity column 1.
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8.2 The one-half fraction of the 2* design

m TABLE 8.1
Plus and Minus Signs for the 2° Factorial Design

Treatment Factorial Effect

Combination I A B c AB AC BC ABC
a + + _ _ _ _ . +

b + — + _ _ 4 _ +

c + — _ + " B B N
abe + + + + + + + +
ab + + + - + - - -
e + * - + - + - _
bc + — + + _ _ + _
) + - _ _ N . N B

Md Rasel Biswas Chapter 8 11/95



8.2 The one-half fraction of the 2* design
@ The estimates of the main effects of A, B, and C' are

[A] = %(a—b—c—l—abc)
[B] = %(—a +b—c+abc)
[C] = %(—a— b+ ¢+ abc)
@ The estimates of the interactions AB, BC, and AC are
(BC] = %(a —b—c+ abe)
[AC] = S(~a+b—c+ abo)

[AB] = %(—a— b+ c + abe)
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8.2 The one-half fraction of the 2* design

e Thus, [A] = [BC],[B] = [AC], and [C] = [AB] consequently, it is
impossible to differentiate between A and BC, B and AC', and C
and AB.

@ In fact, when we estimate A, B, and C' we are really estimating
A+ BC,B+ AC, and C + AB. Two or more effects that have this
property are called aliases.

@ In our example, A and BC are aliases, B and AC are aliases, and C
and AB are aliases.
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8.2 The one-half fraction of the 2* design

@ We indicate this by the notation [A] - A + BC,[B] — B+ AC,
and [C] - C + AB.

@ The alias structure for this design may be easily determined by using
the defining relation I = ABC.

@ Multiplying any column (or effect) by the defining relation yields the
aliases for that column (or effect).

@ In our example, this yields that the alias of A is BC.

Al = A.ABC = A2BC = BC

e Similarly, we find that (B and AC) and (C and AB) are aliases
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8.2 The one-half fraction of the 2* design

@ This one-half fraction, with I = + ABC, is usually called the
principal fraction.

@ Now suppose that we had chosen the other one-half fraction, that is,
the treatment combinations associated with minus in the ABC
column, known as the complementary or alternate fraction.

@ The defining relation for this design is I = —ABC.

@ The alternate fraction gives us

[A] = A— BC
(B = B— AC
[C] = C— AB
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8.2 The one-half fraction of the 2* design

Thus, when we estimate A, B, and C' with this particular fraction, we are
really estimating A — BC, B— AC, and C — AB.

In practice, it does not matter which fraction is actually used. The two
one-half fractions form a complete 23 design.

Suppose that after running one of the one-half fractions of the 23 design,
the other fraction was also run. Thus, all eight runs associated with the
full 23 are now available.
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8.2 The one-half fraction of the 2* design

@ We may now obtain de-aliased estimates of all the effects by

analyzing the eight runs as a full 23 design in two blocks of four runs
each.

@ This could also be done by adding and subtracting the linear
combination of effects from the two individual fractions.

1@4+MD:%M+BC+A—M3%A

N — N

(14] ~ [A)') = 5(A+ BC — A+ BC) — BC
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8.2 The one-half fraction of the 2* design

Thus, for all three pairs of linear combinations, we would obtain the
following:

~

From J(li1+[i)  From J(Ii] - [il)

A A BC
B B AC
C C AB

Furthermore, by assembling the full 23 in this fashion with I = +ABC in
the first group of runs and I = —ABC in the second, the 23 confounds

ABC with blocks
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Design resolution

@ The preceding 23 — 1 design is called a resolution 11l design

@ In such a design, main effects are aliased with two-factor interactions.

A design is of resolution R if no p-factor effect is aliased with
another effect containing less than R — p factors

@ We usually employ a Roman numeral subscript to denote design
resolution;

@ Thus, the one-half fraction of the 23 design with the defining relation
I =ABC (or I = —ABC) is a 237} design.
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Design resolution

@ Design resolutions describe how much the effects in a fractional
factorial design are aliased with other effects.

@ When we do a fractional factorial design, one or more of the effects
are confounded, meaning they cannot be estimated separately from
each other.

@ Usually, we want to use a fractional factorial design with the highest
possible resolution.
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Design resolution

Resolution 111 designs.

@ These are designs in which no main effects are aliased with any other
main effect, but main effects are aliased with two-factor interactions
and some two-factor interactions may be aliased with each other.

@ The 237! design in Table 8.1 is of resolution IIl (23;}

Md Rasel Biswas Chapter 8 21/95



Design resolution

Resolution IV design.

@ These are designs in which no main effect is aliased with any other
main effect or with any two-factor interaction, but two-factor
interactions are aliased with each other.

o A 247! design with I = ABCD is a resolution IV design (23!
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Design resolution

Resolution V design.

@ These are designs in which no main effect or two-factor interaction is
aliased with any other main effect or two-factor interaction, but
two-factor interactions are aliased with three-factor interactions.

o A 257! design with I = ABCDE is a resolution V design (257')
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Design resolution

@ In general, the resolution of a two-level fractional factorial design is
equal to the shortest number of letters in any word in the defining
relation

Higher the resolution better the design (why?)
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Design resolution

@ We never want a resolution Il design, because a design would alias
two main effects. Thus minimum acceptable resolution in Il

@ Resolution Il designs have some main effects aliased to two-factor
interactions. If we believe that only main effects are present and all
interactions are negligible, then a resolution Il design is sufficient for
estimating main effects.

@ Resolution Il designs are called main effects design for this reason.

o If we believe that some two factor interactions may be non negligible
but all three way and higher interactions are negligible then a
resolution IV is sufficient for main effects.

@ Low resolution fractional factorials are often used as screening
designs, where we are trying to screen many factors to see if any of
them has an effect. This is usually an early stage of investigation.
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Subsection 3

Construction and Analysis of the One-Half Fraction
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Construction and Analysis of the One-Half Fraction

A one-half fraction of the 2% design of the highest resolution may be

constructed by
@ writing down a basic design consisting of the runs for a full 281

factorial and

o then adding the the k" factor by identifying its plus and minus levels
with the plus and minus signs of the highest order interaction
ABC - (K —1)
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Constructing one-half fractions

o E.g. the 23;} fractional factorial design of the highest resolution can
be obtained by writing down the full 22 factorial as the basic design
and then equating the factor C' to AB

m TABLE 8.2
The Two One-Half Fractions of the 2° Design

Full 2%
Factorial
(Basic Design) 2311 = ABC 221 1=—ABC
Run A B A B C=AB A B C=-AB
1 - - - - + - - -
2 + - + - - + - +
3 - + - + - - + +
4 + + + + + + + -

Md Rasel Biswas Chapter 8 28 /95



Constructing one-half fractions

@ Note that any interaction effect could be used to generate the column
for the kth factor.

@ However, using any effect other than ABC'....(K-1) will not produce a
design of the highest possible resolution.

@ Another way to view the construction of a one-half fraction is to
partition the runs into two blocks with the highest order interaction
ABC ... K confounded. Each block is a 2~ fractional factorial
design of the highest resolution.
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Constructing one-half fractions

Sequences of fractional factorials

o Fractional factorial designs could be less expensive and efficient in
experimentation, if the runs can be made sequentially

o If the interest is in investigating k = 4 factors (i.e. 2* = 16 runs)
then it is preferable to run a 2‘}‘71 fractional design, analyze the
results, and then decide on the best set of runs to perform the next.

@ If necessary we can always run the alternate fraction and get the
complete 2% design, where both half-fractions are considered as bIocks)
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Constructing one-half fractions

Projection of Fractions into Factorials

Any fractional factorial design of resolution R contains complete
factorial designs (possibly replicated factorials) in any subset of
R — 1 factors.

@ This is an important and useful concept

@ Because the maximum possible resolution of a one-half fraction of the
2% design is R = k, every 2! design will project into a full factorial
in any (k — 1) of the original k factors.

o Furthermore, a 27! design may be projected into two replicates of a
full factorial in any subset of k — 2 factors, four replicates of a full
factorial in any subset of k£ — 3 factors, and so on.
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EXAMPLE 8.1

o Consider the filtration rate experiment in Example 6.2. The original
design is a single replicate of the 2* design.

@ In that example, we found that the main effects A, C', and D and the
interactions AC' and AD were different from zero.

o We will now return to this experiment and simulate what would have
happened if a half-fraction of the 2% design had been run instead of
the full factorial.
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EXAMPLE 8.1

m TABLE 6.10

Pilot Plant Filtration Rate Experiment

Factor Filtration
Run Rate
Number A B C D Run Label (gal/h)
1 - - - - (€)) 45
2 + - - - a 71
3 — + - - b 48
4 @ aF = - ab 65
5 - - + - @ 68
6 + - + - ac 60
7 - + + - be 80
8 P P ap - abc 65
9 - = = @ d 43
10 + = = + ad 100
11 - + - + bd 45
12 + + - + abd 104
13 - - + + cd 75
14 + + + acd 86
15 - + + + bed 70
16 + + + + abcd 96
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EXAMPLE 8.1

Md Rasel Biswas

m TABLE 6.12
Factor Effect Estimates and Sums of Squares for
the 2¢ Factorial in Example 6.2

Model Effect Sum of Percent
Term Estimate Squares Contribution

A 21.625  1870.56 32.6397

B 3.125 39.0625 0.681608

€ 9.875 390.062 6.80626

D 14.625 855.563 14.9288

AB 0.125 0.0625 0.00109057

AC —18.125  1314.06 22.9293

AD 16.625  1105.56 19.2911

BC 2.375 22.5625 0.393696

BD —0.375 0.5625 0.00981515

CD =115 5.0625 0.0883363

ABC 1.875 14.0625 0.245379

ABD 4.125 68.0625 1.18763

ACD —1.625 10.5625 0.184307

BCD —2.625 27.5625 0.480942

ABCD 1.375 7.5625 0.131959
Chapter 8
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EXAMPLE 8.1

We will use the 2471 design with I = ABCD.

m TABLE 8.3
The 2" Design with the Defining Relation I = ABCD

Basic Design
Run A B C D =ABC Treatment Combination Filtration Rate
1 - - - - 1) 45
2 o = — + ad 100
3 - + - + bd 45
4 + + - - ab 65
5 - - + + cd 75
6 + - + - ac 60
7 - + + - be 80
8 + + + + abcd 96
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EXAMPLE 8.1

@ Using the defining relation, we note that each main effect is aliased
with a three-factor interaction; that is,
A= A2BCD = BCD, B = AB°CD = ACD,C = ABC*D =
ABD, and D = ABCD® = ABC.

@ Furthermore, every two-factor interaction is aliased with another
two-factor interaction. These alias relationships are
AB=CD,AC = BD, and BC = AD.

@ The four main effects plus the three two-factor interaction alias pairs
account for the seven degrees of freedom for the design.
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EXAMPLE 8.1

(4] :}1(—45 100 — 45 + 65 — 75
160 — 80+ 96) = 19.00 — A + BCD
[AB] = (45 — 100 — 45 + 65 + 75 — 60 — 80 + 96)
— 100> AB+CD

Md Rasel Biswas Chapter 8
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EXAMPLE 8.1

m TABLE 8.4
Estimates of Effects and Aliases from Example 8.1¢

Estimate Alias Structure
[A] = 19.00 [A] > A+ BCD
[B] = 1.50 [B] - B+ ACD
[C] = 14.00 [C] - C+ABD
[D] = 16.50 [D] » D+ ABC
[AB] = —1.00 [AB] - AB+ CD
[AC] = —18.50 [AC] - AC + BD
[AD] = 19.00 [AD] - AD + BC

“Significant effects are shown in boldface type.
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EXAMPLE 8.1

@ Because factor B is not significant, we may drop it from consideration.
Consequently, we may project this design into a single replicate of the
23 design in factors A, C, and D.

@ Based on the above analysis, we can now obtain a model to predict
filtration rate over the experimental region. This model is

y :Bo + 315”1 + 33553 + 34% + 3131’31953 + 514551954
19. 14. 16.

—18.50 19.00
+ ( 5 >x1x3+ (2 >x1x4
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EXAMPLE 8.1

@ There are two large effects associated with two-factor interactions,
AC 4+ BD and AD + BC.

@ In Example 8.2, we used the fact that the main effect of B was
negligible to tentatively conclude that the important interactions were
AC and AD.

@ However, we can always isolate the significant interaction by running
the alternate fraction, given by I = —ABCD.
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EXAMPLE 8.1

Basic Design
Run A B C D=-ABC Treatment Filtration Rate
1 - - = + d 43
2 + - - — a 71
3 - 4+ - — b 48
4 + + - + abd 104
5 - - + — c 68
6 + - + + acd 86
7T - + + + bed 70
8 + + + — abc 65
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EXAMPLE 8.1

[A]" = 2425— A — BCD
[B] = 475— B — ACD
[C] = 5.75— C — ABD
[D] = 1275 — D — ABC
[AB]" = 125— AB — CD
[AC]" = — 17.75— AC — BD
[AD]" = 1425 —AD — BC
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EXAMPLE 8.1

From ; ([i] + [i]") From ; ([i] — [i]")

QW

AB

AD

21.63 —A —2.63 — BCD
3.13 =B —1.63 = ACD
9.88 —=C 4.13 — ABD

14.63 =D 1.88 — ABC
0.13 —AB —1.13— CD

—18.13 = AC —0.38 — BD

16.63 —AD 2.38 — BC
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Subsection 4

8.3 The one-quarter fraction of the 2* design

Md Rasel Biswas Chapter 8



8.3 The one-quarter fraction of the 2* design

e One-quarter fraction of the 2% design could be useful when the
number of factors is large.

2k—2

@ This design contains runs and is usually called a 22 fractional

factorial.

@ The construction of the 2¥~2 fractional factorial design requires to
write down the basic design with &k — 2 factors first and then two
additional columns are constructed from appropriately chosen
interactions involving the first kK — 2 factors.
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8.3 The one-quarter fraction of the 2* design

@ The one-quarter fraction of the 2¥ design has two generators, if P
and () are the two generators then their generalized interaction P(Q)
also acts as a generator

o Complete defining relation is [ = P = () = PQ

@ As an example, consider 2672 design with I = ABCE and
I = BCDF as the design generators

» The complete defining relation for this design is

I = ABCE = BCDF = ADEF(ABCE x BCDF)

» This 26=2 design is a resolution IV design, why?
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8.3 The one-quarter fraction of the 2* design

o For the 2672 design with I = ABCE = BCDF = ADEF, the main
effects are aliased with two- and five-factor interactions, e.g.

A(I) = A(ABCE) = A(BCDF) = A(ADEF)
A = BCE = ABCDF = DEF

@ When we estimate the main effect of A, we actually estimate
A+ BCE+ DEF + ABCDF

@ Similarly, when we estimate 2-factor interaction AB, we actually
estimate AB+ CFE + ACDF + BDEF
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8.3 The one-quarter fraction of the 2* design

The complete alias structure of this design is

m TABLE 8.8

Alias Structure for the 2;‘;2 Design with I = ABCE = BCDF = ADEF

A = BCE = DEF = ABCDF
B = ACE = CDF = ABDEF
C = ABE = BDF = ACDEF
D = BCF = AEF = ABCDE
E = ABC = ADF = BCDEF
F = BCD = ADE = ABCEF

ABD = CDE = ACF = BEF
ACD = BDE = ABF = CEF

AB = CE = ACDF = BDEF
AC = BE = ABDF = CDEF
AD = EF = BCDE = ABCF
AE = BC = DF = ABCDEF
AF = DE = BCEF = ABCD
BD = CF = ACDE = ABEF
BF = CD = ACEF = ABDE

Md Rasel Biswas
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8.3 The one-quarter fraction of the 2* design

@ To construct the design, first write down the basic design, which
consists of the 16 runs for a full 2672 = 24 design in A, B, C, and D.

@ Then the two factors F and F' are added by associating their plus and
minus levels with the plus and minus signs of the interactions ABC'
and BCD, respectively. This procedure is shown below
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8.3 The one-quarter fraction of the 2* design

m TABLE 8.9
Construction of the 2:;2 Design with the Generators I = ABCE and I = BCDF

Basic Design
Run A B c D E =ABC F =BCD
1 - - - - — -
2 + - - - + -
3 - + - - + +
4 + + - - - +
5 - - + - + +
6 + - + - - +
7 - + + - - -
8 + + + + -
9 - - - + - +
10 + - - + + +
11 - + - + + -
12 + + - + - -
13 - - + + + -
14 + - + + -
15 - + + + - +
16 + + + + + +

Md Rasel Biswas Chapter 8 50 /95



8.3 The one-quarter fraction of the 2* design

@ Another way to construct this design is to derive the four blocks of
the 26 design with ABC'E and BCDF confounded and then choose
the block with treatment combinations that are positive on ABC'E
and BCDF.

@ This would be a 2672 fractional factorial with generating relations
I = ABCEFE and I = BCDF, and because both generators ABCE
and BC'DF are positive, this is the principal fraction.
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8.3 The one-quarter fraction of the 2* design

@ For this 2672 design, there are three alternate fractions, which are

I = ABCE, I=—BCDF;
I=—ABCE, I=BCDF; and
I =—ABCE, I=—-BCDF
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EXAMPLE 8.4

A quality improvement team has decided to use a designed experiment to
study the injection molding process so that shrinkage can be reduced. The
team decides to investigate six factors Mold temperature (A), Screw speed
(B), Holding time (C), Cycle time (D), Gate size (E), and holding pressure
(F) - each at two levels.

The objective of this experiment is of learning how each factor affects
shrinkage and also, something about how the factors interact. The team
decides to use the 16-run two-level fractional factorial design.
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EXAMPLE 8.4

m TABLE 8.10

A 287% Design for the Injection Molding Experiment in Example 8.4

Basic Design

Run A B C D E =ABC F = BCD Observed Shrinkage (x 10)

1 - - - - - - 6 (o))

2 + - - - + - 10 ae

3 - + — — + + 32 bef

4 + + - - - + 60 abf

5 - - + — + + 4 cef

6 + - - - - + 15 acf

7 - + + - - - 26 be

8 + + - - -- — 60 abce

9 — - - + - + 8 df
10 + - - + + + 12 adef
11 - + - + + - 34 bde
12 + + - + - - 60 abd
13 - - + + + - 16 cde
14 + - + + - - 5 acd
15 - + + + - + 37 bedf
16 + + + + + + 52 abcdef
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EXAMPLE 8.4

Variable® Regression Coefficient Estimated Effect Sum of Squares
Overall Average 27.3125

A 6.9375 13.8750 770.062
B 17.8125 35.6250 5076.562
© —0.4375 —0.8750 3.063
D 0.6875 1.3750 7.563
E 0.1875 0.3750 0.563
F 0.1875 0.3750 0.563
AB + CE 5.9375 11.8750 564.063
AC + BE —0.8125 —1.6250 10.562
AD + EF —2.6875 —5.3750 115.562
AE + BC + DF —0.9375 —1.8750 14.063
AF + DE 0.3125 0.6250 1.563
BD + CF —0.0625 —0.1250 0.063
BF + CD —0.0625 —0.1250 0.063
ABD 0.0625 0.1250 0.063
ABF —2.4375 —4.8750 95.063

“Only main effects and two-factor interactions.
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EXAMPLE 8.4

1 —99
S #
% 5 A —95
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% [ O O Y B

10 15 20 25 30 35 40
Effect estimates

m FIGURE 8.12 Normal probability plot of
effects for Example 8.4

The only large effects are A (mold temperature), B (screw speed), and the
AB interaction
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EXAMPLE 8.4

60 [— B+

B+

Shrinkage (x10)

B-o—

4 |
Low High
Mold temperature, A
m FIGURE 8.13 Plot of AB (mold
temperature-screw speed) interaction for Example 8.4
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EXAMPLE 8.4

P;x 100

Normal probability, (1 - P;) x 100

99— —
| | | | | !

0
Residuals

m FIGURE 8.14 Normal probability plot
of residuals for Example 8.4
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EXAMPLE 8.4

@ The plot of the AB interaction shows that the process is very
insensitive to temperature if the screw speed is at the low level but
very sensitive to temperature if the screw speed is at the high level.

@ Based on this initial analysis, the team decides to set both the mold
temperature and the screw speed at the low level
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Subsection 5

8.4 The general 2P fractional factorial design
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8.4 The general 2P fractional factorial design

o A 2% fractional design containing 2P runs is called 1/2” fraction of
the 2% design or 2¥~7 fractional factorial design

@ These designs require the selection of p independent generators and
the corresponding defining relation consists of the initially chosen p
generators and their 27 — p — 1 generalized interactions

@ The alias structure can be found by multiplying each effect column by
the defining relation and generators should be chosen carefully so that
effects of potential interest are not aliased with each other, and each
effect will have 2P — 1 aliases

@ For moderately large values of k, we usually assume higher order
interactions (say, third- or fourth-order and higher) to be negligible,
and this greatly simplifies the alias structure.
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8.4 The general 2P fractional factorial design

e It is important to select the p generators for a 28~ fractional factorial
design in a way that we obtain the best possible alias relationships

@ A reasonable criterion is to select the generators such that the
resulting 277 design has the highest possible resolution, e.g. consider
a 26=2 design

Defining relation I = ABCE = ABCDF — Resolution Il
Defining relation I = ABCE = BCDF — Resolution IV
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8.4 The general 2P fractional factorial design

@ Sometimes resolution alone is insufficient to distinguish between
designs. For example, consider the three 2,72 designs, which are
based on different defining relations, but have the equal resolution
1V.

@ Sometimes resolution alone is insufficient to distinguish between
designs. consider the three 2,72 designs given below
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8.4 The general 2P fractional factorial design

Design A Generators: Design B Generators: Design C Generators:
F =ABC, G = BCD F=ABC, G=ADE F =ABCD, G = ABDE
I =ABCF = BCDG = ADFG I =ABCF =ADEG = BCDEFG [ =ABCDF = ABDEG = CEFG

Aliases (two-factor interactions)  Aliases (two-factor interactions) Aliases (two-factor interactions)

AB = CF AB =CF CE = FG
AC = BF AC = BF CF = EG
AD = FG AD = EG CG=EF
AG = DF AE = DG
BD = CG AF = BC
BG =CD AG = DE
AF =BC = DG
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8.4 The general 2P fractional factorial design

@ All of these designs are of resolution IV, but they have rather different
alias structures (we have assumed that three-factor and higher
interactions are negligible) with respect to the two-factor interactions.

@ Clearly, design A has more extensive aliasing and design C' the least,
so design C would be the best choice for a 2,7 2.

@ The three word lengths in design A are all 4; that is, the word length
pattern is {4,4,4}.
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8.4 The general 2P fractional factorial design

e For design B it is {4,4,6}, and for design C it is {4,5,5}

@ Notice that the defining relation for design C' has only one four-letter
word, whereas the other designs have two or three.

@ Thus, design C' minimizes the number of words in the defining
relation that are of minimum length. We call such a design a
minimum aberration design.
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8.4 The general 2P fractional factorial design

Minimizing aberration in a design of resolution R ensures that the design
has the minimum number of main effects aliased with interactions of order
R — 1, the minimum number of two-factor interactions aliased with
interactions of order R — 2, and so forth.

Table 8.14 presents a selection of 2P fractional factorial designs for
k < 15 factors and up to n < 128 runs.

The suggested generators in this table will result in a design of the highest
possible resolution. These are also the minimum aberration designs.
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8.4 The general 2P fractional factorial design

Number of Number Design
Factors, k Fraction of Runs Generators
3 230! 4 C= *AB
285! 8 D= * ABC
5 23! 16 E= *ABCD
P 8 D= *AB
E= *AC
6 287 32 F= * ABCDE
2672 16 E= * ABC
F= *BCD
263 8 D= * AR
E= *AC
F= *BC
7 25 64 G= * ABCDEF
202 32 F= * ABCD
G= * ABDE
Pl 16 E= * ABC
F= *BCD
G= + ACD
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8.4 The general 2P fractional factorial design

The alias relationships for all of the designs in Table 8.14 for which
n < 64 are given in Appendix Table X(a-w).

The alias relationships presented in this table focus on main effects and
two- and three-factor interactions. The complete defining relation is given
for each design.

This appendix table makes it very easy to select a design of sufficient
resolution to ensure that any interactions of potential interest can be
estimated.
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Analysis of 2872 fractional factorials

@ The ith effect is estimated by

contrast;

l —

W/

where contrast; can be found from the plus and minus sign of the
column i and N = 2*7P is the total number of observations

@ The 2P design allows only 2¥7P — 1 effects (and their aliases) to be

estimated
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Exercise 8.12.

An article in Industrial and Engineering Chemistry (“More on Planning
Experiments to Increase Research Efficiency,” 1970, pp. 60-65) uses a 252
design to investigate the effect of A = condensation temperature, B =
amount of material 1, C = solvent volume, D = condensation time, and
E = amount of material 2 on yield. The results obtained are as Follows:

e=232 ad=16.9 cd=23.8 bde=16.8
ab=155 bc=16.2 ace=23.4 abcde =18.1

@ Verify that the design generators used were | = ACE and I = BDFE.

@ Write down the complete defining relation and the aliases for this
design.

@ Estimate the main effects.

Md Rasel Biswas Chapter 8 71/95



Exercise 8.12.

@ Prepare an analysis of variance table. Verify that the AB and AD
interactions are available to use as error.

@ Plot the residuals versus the fitted values. Comment on the results.
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Subsection 6

Blocking Fractional Factorials
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Blocking Fractional Factorials

@ Occasionally, a fractional factorial design requires so many runs that
all of them cannot be made under homogeneous conditions.

@ In these situations, fractional factorials may be confounded in blocks.

@ Appendix Table X contains recommended blocking arrangements for
many of the fractional factorial designs in Table 8.14. The minimum
block size for these designs is eight runs
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Blocking Fractional Factorials

@ In assigning fractional factorials into blocks, we need to be careful
about the effects to be confounded with blocks

o The 292 design with /| = ABCE = BCDF = ADEF is
(1),df,cef,bef,a,abef, acf,be,
adef,bde, cde, abce, abd, acd, bed f,abedef,

@ This fractional design contains 16 treatment combinations.

@ We want to conduct the experiment into two blocks. Which effect
should we select to be confounded with blocks?
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Blocking Fractional Factorials

@ In selecting an interaction to confound with blocks, we note from
examining the alias structure in Appendix Table IX(f) that there are
two alias sets involving only three-factor interactions.

() 2°72; 1/4 fraction of Resolution IV
6 factors in 16 runs
Design Generators
E=ABC F=BCD
Defining relation: [ = ABCE = BCDF = ADEF

Aliases

A = BCE = DEF AB =CE

B = ACE = CDF AC = BE

C = ABE = BDF AD = EF

D = BCF = AEF AE = BC=DF

E = ABC = ADF AF = DE

F =BCD=ADE BD =CF
ABD = CDE= ACF = BEF BF =CD

ACD = BDE = ABF = CEF
2 blocks of 8: ABD = CDE = ACF = BEF

@ The table suggests selecting ABD (and its aliases) to be confounded
with blocks.
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Blocking Fractional Factorials

@ Assume the effect ABD confounded with blocks, so the defining
contrast L = zy + x5 + x4, =0 (mod2)

(1),df,cef,bef,a,abef,acf,bc,
adef,bde, cde, abce, abd, acd, bed f, abede f,

Block-1 (L = 0) Block-2 (L =1)
(1),abef,adef,bde df,cef,bef,a,acf,
abce, acd, bed f, abede f be, cde, abd

@ Notice that the principal block contains those treatment combinations

that have an even number of letters in common with ABD.
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Example 8.6

A five-axis CNC machine is used to produce an impeller for a jet turbine
engine. The blade profiles are an important quality characteristic.

Specifically, the deviation of the blade profile from the profile specified on
the engineering drawing is of interest.

An experiment is run to determine which machine parameters affect profile
deviation.
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Example 8.6

The eight factors selected for the design are as follows:

A = x-Axis shift

B = y-Axis shift

C = z-Axis shift

D = Tool supplier

E = a-Axis shift

F = Spindle speed (%)
G = Fixture height

H = Feed rate (%)
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Example 8.6

The profile deviation is measured using a coordinate measuring machine,
and the standard deviation of the difference between the actual profile and
the specified profile is used as the response variable.

The machine has four spindles. Because there may be differences in the

spindles, the process engineers feel that the spindles should be treated as
blocks.
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Example 8.6

The engineers feel confident that three-factor and higher interactions are
not too important, but they are reluctant to ignore the two-factor

interactions.

From Table 8.14, two designs initially appear appropriate: the 2?(,4 design
with 16 runs and the 23, design with 32 runs. The experimenters decide
to use the 2?(,3 design in four blocks.

8 282

8-3
2]\"

8—4
2wy
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32

G= £ ABCD
H= = ABEF
F= £ ABC
G= £ ABD
H= = BCDE
E= = BCD
F= = ACD
G= £ ABC
H= = ABD
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Example 8.6

M 2% 1/16 fraction of Resolution TV

8 factors in 16 runs
Design Generators
E=BCD F=ACD G=ABC H=ABD
Defining relation: [ = BCDE = ACDF = ABEF = ABCG = ADEG = BDFG = CEFG = ABDH
= ACEH = BCFH = DEFH = CDGH = BEGH = AFGH = ABCDEFGH
Aliases
A = CDF = BEF = BCG = DEG = BDH = CEH = FGH AB=FEF=CG=DH
B = CDE = AEF = ACG = DFG = ADH = CFH = EGH AC=DF =BG =FH
C = BDE = ADF = ABG = EFG = AEH = BFH = DGH AD=CF=EG=BH
D= BCE = ACF = AEG = BFG = ABH = EFH = CGH AE=BF=DG=CH
E = BCD = ABF = ADG = CFG = ACH = DFH = BGH AF=CD=BE=GH
F=ACD = ABE = BDG = CEG = BCH = DEH = AGH AG = BC = DE=FH
G=ABC = ADE = BDF = CEF = CDH = BEH = AFH AH=BD=CE=FG
H=ABD = ACE = BCF = DEF = CDG = BEG = AFG
2 blocks of 8: AB = EFF = CG = DH

(m) 2°°% 148 fraction of Resolution IV

8 factors in 32 runs

F=ABC G =ABD H=BCDE
Defining relation: [= ABCF = ABDG = CDFG = BCDEH = ADEFH = ACEGH = BEFGH

Aliases

A = BCF = BDG AE = DFH = CGH DE = BCH = AFH

B = ACF = ADG AF = BC = DEH DH = BCE = AEF

C = ABF = DFG AG = BD = CEH EF = ADH = BGH

D = ABG = CFG AH = DEF = CEG EG = ACH = BFH

= BE = CDH = FGH EH = BCD = ADF = ACG = BFG

F =ABC =CDG BH = CDE = EFG FH = ADE = BEG

G = ABD = CDF CD = FG = BEH GH = ACE = BEF

H CE = BDH = AGH ABE = CEF = DEG
AB = CF = DG CG = DF = AEH ABH = CFH = DGH
AC = BF = EGH CH = BDE = AEG ACD = BDF = BCG = AFG

AD = BG = EFH
2 blocks of 16: ABE = CEF = DEG 4 blocks of 8: ABE = CEF = DEG
ABH = CFH = DGH
EH = BCD = ADF = ACG = BFG
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Example 8.6

The 2* 2 Design in Four Blocks for Example 8.6

Actual Standard

[l et Run Deviation

Run A B C D E F=ABC G=ABD H=BCDE Block Order (% 10% in)
1 = = = = = = = + 3 18 2.76
2 + = = = = Rl + + 2 16 6.18
3 = + = = = + + = 4 29 243
4 + 4 = = = = = = 1 4 4.01
5 = = 3F = = i = = 1 6 2.48
6 < = 4 = = = + = 4 26 5.91
7 = + + = = = + + 2 14 2.39
8 <= i 3F = = i = <= 3 22 3.35
9 = = = Rl = = + = 1 8 4.40
10 s = = 3+ = a4+ = = 4 32 4.10
11 = + = + = + = + 2 15 3.22
12 <= i = + = = + <= 3 19 3.78
13 = = Rl + = Rl + < 3 24 5.32
14 + = + + = = = + 2 11 3.87
15 = Rl 4+ + = = = = 4 27 3.03
16 <= s s + = s + = 1 3 2.95
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Example 8.6

17 = = = = = = = = 2 10 264
18 £ = = = = + + = 3 21 5.50
19 = 4+ = = = + + + 1 7 224
20 + + = = + = = + 4 28 4.28
21 - = % = = + - + 4 30 2.57
2 Bo= o = = + + 1 2 5.37
23 - & # = = + = 3 17 211
24 + o+ o+ - o+ + = = 2 13 418
25 = = = = & = + + 4 25 3.96
26 = = = o + = + 1 1 3.27
27 = + = + + + = = 3 23 341
28 + o+ - o+ o+ = + = 2 12 430
29 = = = % = + + = 2 9 444
30 + - o+ o+ o+ = = = 3 20 3.65
31 - + o+ o+ o+ = = + 1 5 441
32 + o+ o+ o+ o+ + + + 4 31 3.40
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Example 8.6

Because the response variable is a standard deviation, it is often best to
perform the analysis following a log transformation.

Variable Regression Coefficient Estimated Effect Sum of Squares
Overall average 1.28007

A 0.14513 0.29026 0.674020
B —0.10027 —0.20054 0.321729
(€ —0.01288 —0.02576 0.005310
D 0.05407 0.10813 0.093540

E —2.531E-04 —5.063E-04 2.050E-06
F —0.01936 —0.03871 0.011988
G 0.05804 0.11608 0.107799
H 0.00708 0.01417 0.001606

AB + CF + DG —0.00294 —0.00588 2.767E-04
AC + BF —0.03103 —0.06206 0.030815
AD + BG —0.18706 —0.37412 1.119705

AE 0.00402 0.00804 5.170E-04
AF + BC —0.02251 —0.04502 0.016214
AG + BD 0.02644 0.05288 0.022370
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Example 8.6

Variable Regression Coefficient Estimated Effect Sum of Squares
AH —0.02521 —0.05042 0.020339
BE 0.04925 0.09851 0.077627
BH 0.00654 0.01309 0.001371

CD + FG 0.01726 0.03452 0.009535
CE 0.01991 0.03982 0.012685
CG + DF —0.00733 —0.01467 0.001721
CH 0.03040 0.06080 0.029568
DE 0.00854 0.01708 0.002334
DH 0.00784 0.01569 0.001969
EF —0.00904 —0.01808 0.002616
EG —0.02685 —0.05371 0.023078
EH —0.01767 —0.03534 0.009993
FH —0.01404 —0.02808 0.006308
GH 0.00245 0.00489 1.914E-04
ABE 0.01665 0.03331 0.008874
ABH —0.00631 —0.01261 0.001273
ACD —0.02717 —0.05433 0.023617
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Example 8.6
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Example 8.6

Suppose that process knowledge suggests that the appropriate interaction
is likely to be AD.

Following table shows the resulting analysis of variance for the model with
factors A, B, D, and AD (factor D was included to preserve the hierarchy
principle).

Notice that the block effect is small, suggesting that the machine spindles
are not very different.
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Example 8.6

Analysis of Variance for Example 8.6

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy P-Value
A 0.6740 1 0.6740 39.42 <0.0001
B 0.3217 1 0.3217 18.81 0.0002
D 0.0935 1 0.0935 547 0.0280
AD 1.1197 1 1.1197 65.48 <0.0001
Blocks 0.0201 3 0.0067

Error 0.4099 24 0.0171

Total 2.6389 31
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Example 8.6

Normal probability, (1 —}?)x100
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Example 8.6

Log standard deviation x 108

1.825}—

0.75

D

D+

Low
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Example 8.6

Normal probability plot of the residuals is suggestive of slightly heavier
than normal tails, so possibly other transformations should be considered.

The AD interaction plot shows that running A at the low level ( 0 offset)
and buying tools from supplier 1 gives the best results.

The projection of this design into four replicates of a 2% design in factors
A, B, and D is shown below.
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Example 8.6

1.247 1273
|
|
0.8280 :
SIE . 1.370
|
|
|
B, y-Axis shift R 1310
7 2
s/
7/
//
0 70.9595 1.745 D, Tool supplier
| ™1
0 +15
A, x-Axis shift

The figure indicates
that the best combination of operating conditions is A at the low level (0
offset), B at the high level (0.015 in offset), and D at the low level (tool
supplier 1).
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Exercise 8.45

Consider the design:

Run

— 0l o 8o — ol n o n O

94 /95
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Exercise 8.45

ee oceo

What is the generator for column E?

If ABC' is confounded with blocks, run 1 above goes in the block —-.
Answer either + or —.

What is the resolution of this design?

Find the estimates of the main effects.
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