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11.1 Introduction

Factorial designs are very useful for factor screening - that is, identifying
the most important factors that affect the performance of a process.
Sometimes this is called process characterization.

Once the appropriate subset of process variables is identified, the next step
is usually process optimization, or finding the set of operating conditions
for the process variables that result in the best process performance.

Response surface methodology, or RSM, is a collection of
mathematical and statistical techniques useful for the modeling and
analysis of problems in which a response of interest is influenced by several
variables and the objective is to optimize this response.
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11.1 Introduction
For example, suppose that a chemical engineer wishes to find the levels of
temperature (𝑥1) and pressure (𝑥2) that maximize the yield (𝑦) of a
process.

The process yield is a function of the levels of temperature and pressure,
say

𝑦 = 𝑓 (𝑥1, 𝑥2) + 𝜖
where 𝜖 represents the noise or error observed in the response 𝑦. If we
denote the expected response by

𝐸(𝑦) = 𝑓 (𝑥1, 𝑥2) = 𝜂

then the surface represented by

𝜂 = 𝑓 (𝑥1, 𝑥2)

is called a response surface.
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11.1 Introduction

We usually represent the response surface graphically, where 𝜂 is plotted
versus the levels of 𝑥1 and 𝑥2

To help visualize the shape of a response surface, we often plot the
contours of the response surface.

In the contour plot, lines of constant response are drawn in the 𝑥1, 𝑥2
plane. Each contour corresponds to a particular height of the response
surface.
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11.1 Introduction

Figure: A three-dimensional response surface showing the expected yield
of temperature (𝑥1) and pressure (𝑥2) with a contour plot.
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11.1 Introduction

As an example, consider an investigation into the effect of the
concentration of the reactant and the amount of the catalyst on the
conversion (yield) in a chemical process.

The objective of the experiment is to determine if adjustments to either of
these two factors would increase the yield.

Let the reactant concentration be factor 𝐴 and let the two levels of
interest be 15 and 25 percent. The catalyst is factor 𝐵 and let the two
levels of interest be 2 pounds and 1 pound.
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11.1 Introduction

The experiment is replicated three times, so there are 12 runs. The order
in which the runs are made is random, so this is a completely randomized
experiment.
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11.1 Introduction

On the basis of the 𝑝−values, we conclude that the main effects are
statistically significant and that there is no interaction between these
factors.
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The Response Surface

The regression model

̂𝑦 = 27.5 + (8.33
2 ) 𝑥1 + (−5.00

2 ) 𝑥2

can be used to generate response surface plots. If it is desirable to
construct these plots in terms of the natural factor levels, then we simply
substitute the relationships between the natural and coded variables that
we gave earlier into the regression model, yielding
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The Response Surface
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The Response Surface
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The Response Surface

Because the model is first-order (that is, it contains only the main effects),
the fitted response surface is a plane.

From examining the contour plot, we see that yield increases as reactant
concentration increases and catalyst amount decreases.

Often, we use a fitted surface such as this to find a direction of potential
improvement for a process.
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RSM

In most RSM problems, the form of the relationship between the response
and the independent variables is unknown.

Thus, the first step in RSM is to find a suitable approximation for the true
functional relationship between 𝑦 and the set of independent variables.

Usually, a low-order polynomial in some region of the independent
variables is employed.
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RSM

If the response is well modeled by a linear function of the independent
variables, then the approximating function is the first-order model

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜖

If there is curvature in the system, then a polynomial of higher degree
must be used, such as the second-order model

𝑦 = 𝛽0 +
𝑘

∑
𝑖=1

𝛽𝑖𝑥𝑖 +
𝑘

∑
𝑖=1

𝛽𝑖𝑖𝑥2
𝑖 + ∑

𝑖<𝑗
𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜖.

Almost all RSM problems use one or both of these models.

The method of least squares is used to estimate the parameters in the
approximating polynomials.
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RSM

RSM is a sequential procedure.

Often, when we are at a point on the response surface that is remote from
the optimum, the objective is to lead the experimenter rapidly and
efficiently along a path of improvement toward the general vicinity of the
optimum.

Once the region of the optimum has been found, a more elaborate model,
such as the second-order model, may be employed, and an analysis may be
performed to locate the optimum.
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RSM
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Summary: (Steps of RSM)

1 Find a suitable approximation for 𝑦 = 𝑓(x) using LS {maybe a
low-order polynomial}

2 Move towards the region of the optimum
3 When curvature is found find a new approximation for 𝑦 = 𝑓(x)

{generally a higher order polynomial} and perform the “Response
Surface Analysis”

The eventual objective of RSM is to determine the optimum operating
conditions for the system or to determine a region of the factor space in
which operating requirements are satisfied.
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Subsection 2

11.2 Method of Steepest Ascent
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11.2 Method of Steepest Ascent

(A procedure for moving sequentially from an initial “guess” towards to
region of the optimum)

Frequently, the initial estimate of the optimum operating conditions for
the system will be far from the actual optimum.

In such circumstances, the objective of the experimenter is to move rapidly
to the general vicinity of the optimum.
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11.2 Method of Steepest Ascent

When we are remote from the optimum, we usually assume that a
first-order model is an adequate approximation to the true surface in a
small region of the 𝑥’s.

The method of steepest ascent is a procedure for moving sequentially in
the direction of the maximum increase in the response.

If minimization is desired, then we call this technique the method of
steepest descent.
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11.2 Method of Steepest Ascent

The fitted first-order model is

̂𝑦 = ̂𝛽0 +
𝑘

∑
𝑖=1

̂𝛽𝑖𝑥𝑖

and the first-order response surface, that is, the contours of ̂𝑦, is a series
of parallel lines.

The direction of steepest ascent is the direction in which ̂𝑦 increases most
rapidly.
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11.2 Method of Steepest Ascent

Figure 1: First order response surface and path of steepest ascent
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11.2 Method of Steepest Ascent

We usually take as the path of steepest ascent the line through the center
of the region of interest and normal to the fitted surface.

Thus, the steps along the path are proportional to the regression
coefficients.

The actual step size is determined by the experimenter based on process
knowledge or other practical considerations.
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11.2 Method of Steepest Ascent

Experiments are conducted along the path of steepest ascent until no
further increase in response is observed.

Then a new first-order model may be fit, a new path of steepest ascent
determined, and the procedure continued.

Eventually, the experimenter will arrive in the vicinity of the optimum.
This is usually indicated by lack of fit of a first-order model. At that time,
additional experiments are conducted to obtain a more precise estimate of
the optimum.
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Example 11.1
A chemical engineer is interested in determining the operating conditions
that maximize the yield of a process. Two controllable variables influence
process yield: reaction time and reaction temperature. The engineer is
currently operating the process with a reaction time of 35 minutes and a
temperature of 155∘F, which result in yields of around 40 percent.
Because it is unlikely that this region contains the optimum, she fits a
first-order model and applies the method of steepest ascent.

The engineer decides that the region of exploration for fitting the
first-order model should be (30, 40) minutes of reaction time and
(150, 160) Fahrenheit. To simplify the calculations, the independent
variables will be coded to the usual (−1, 1) interval. Thus, if 𝜉1 denotes
the natural variable time and 𝜉2 denotes the natural variable temperature,
then the coded variables are

𝑥1 = 𝜉1 − 35
5 and 𝑥2 = 𝜉2 − 155

5
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Example 11.1
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Example 11.1

Note that the design used to collect these data is a 22 factorial augmented
by five center points.

Replicates at the center are used to estimate the experimental error and to
allow for checking the adequacy of the first-order model. Also, the design
is centered about the current operating conditions for the process.

A first-order model may be fit to these data by least squares. Employing
the methods for two-level designs, we obtain the following model in the
coded variables

̂𝑦 = 40.44 + 0.775𝑥1 + 0.325𝑥2
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Example 11.1

Before exploring along the path of steepest ascent, the adequacy of the
first-order model should be investigated.

The 22 design with center points allows the experimenter to do the
following:

1 Obtain an estimate of error.
2 Check for interactions (cross-product terms) in the model.
3 Check for quadratic effects (curvature) (See Section 42 for details).
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Example 11.1

The replicates at the center can be used to calculate an estimate of error
as follows:

�̂�2 = (40.3)2 + (40.5)2 + (40.7)2 + (40.2)2 + (40.6)2 − (202.3)2/5
4 = 0.0430
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Example 11.1

we have no reason to question the adequacy of the first-order model

Md Rasel Biswas Chapter 11 33 / 49



Example 11.1

To move away from the design center-the point (𝑥1 = 0, 𝑥2 = 0)
along the path of steepest ascent, we would move 0.775 units in the
𝑥1 direction for every 0.325 units in the 𝑥2 direction.

Thus, the path of steepest ascent passes through the point
(𝑥1 = 0, 𝑥2 = 0) and has a slope 0.325/0.775.

The engineer decides to use 5 minutes of reaction time as the basic
step size. Using the relationship between 𝜉1 and 𝑥1, we see that 5
minutes of reaction time is equivalent to a step in the coded variable
𝑥1 of Δ𝑥1 = 1. Therefore, the steps along the path of steepest
ascent are Δ𝑥1 = 1.0000 and Δ𝑥2 = (0.325/0.775) = 0.42.
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Example 11.1

The engineer computes points along this path and observes the yields
at these points until a decrease in response is noted
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Example 11.1

A new first-order model is fit around the point (𝜉1 = 85, 𝜉2 = 175). The
region of exploration for 𝜉1 is [80, 90], and it is [170, 180] for 𝜉2. Thus,
the coded variables are

𝑥1 = 𝜉1 − 85
5 and 𝑥2 = 𝜉2 − 175

5

Once again, a 22 design with five center points is used. The experimental
design is shown in Table 11.4.
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Example 11.1
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Example 11.1

The first-order model fit to the coded variables in Table 11.4 is

̂𝑦 = 78.97 + 1.00𝑥1 + 0.50𝑥2

The analysis of variance for this model, including the interaction and pure
quadratic term checks, is shown in Table 11.5.
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Example 11.1
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Example 11.1

The interaction and pure quadratic checks imply that the first-order model
is not an adequate approximation.

This curvature in the true surface may indicate that we are near the
optimum.

At this point, additional analysis must be done to locate the optimum
more precisely.
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Step-by-step procedure

1 Choose a step size in one of the process variables, say Δ𝑥𝑗. Usually,
we would select the variable we know the most about, or we would
select the variable that has the largest absolute regression coefficient
∣ ̂𝛽𝑗∣.

2 The step size in the other variables is

Δ𝑥𝑖 =
̂𝛽𝑖

̂𝛽𝑗/Δ𝑥𝑗
𝑖 = 1, 2, … , 𝑘 𝑖 ≠ 𝑗

3 Convert the Δ𝑥𝑖 from coded variables to the natural variables.
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Test for Curvature

By using two-level factorial and fractional factorial designs (augmented
with center points), the experimenter is able to

1 Obtain an estimate of pure error.

The replicated center points can be used to calculate an estimate of
the pure error �̂�2 = 𝑠2 where 𝑠2 is the sample variance of the center
point responses.

2 Overall check for interaction effects in the model.

The sum of squares for testing for interaction is found by
accumulating sum of squares associated with all two-factor
interaction terms which can be estimated.
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Test for Curvature

3 Overall check for quadratic effects (curvature).

If there is no curvature present, then the average response
corresponding to the factorial points (say ̄𝑦𝐹 ) should be similar to the
average response corresponding to the center points (say ̄𝑦𝐶).

Thus, ̄𝑦𝐹 − ̄𝑦𝐶 is an measure of the overall curvature in the surface
over that design space.
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Test for Curvature

If the difference ̄𝑦𝐹 − ̄𝑦𝐶 is small, then there is no quadratic
curvature.

On the other hand, if ̄𝑦𝐹 − ̄𝑦𝐶 is large, then quadratic curvature is
present. A single-degree-of-freedom sum of squares for pure quadratic
curvature is given by

𝑆𝑆Pure quadratic = 𝑛𝐹 𝑛𝐶 ( ̄𝑦𝐹 − ̄𝑦𝐶)2

𝑛𝐹 + 𝑛𝐶

where, in general, 𝑛𝐹 is the number of factorial design points and 𝑛𝐶
is the number of centre point.
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Test for Curvature

When points are added to the center of the 2𝑘 design, the test for
curvature actually tests the hypotheses

𝐻0 ∶
𝑘

∑
𝑗=1

𝛽𝑗𝑗 = 0

𝐻1 ∶
𝑘

∑
𝑗=1

𝛽𝑗𝑗 ≠ 0
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Test for Curvature

Further reading: https://online.stat.psu.edu/stat503/lesson/11
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Exercises
11.1. A chemical plant produces oxygen by liquefying air and separating it
into its component gases by fractional distillation. The purity of the
oxygen is a function of the main condenser temperature and the pressure
ratio between the upper and lower columns. Current operating conditions
are temperature (𝜉1) = −200∘C and pressure ratio (𝜉2) = 1.2. Using the
following data, find the path of steepest ascent:

Temperature (𝜉1) Pressure Ratio (𝜉2) Purity
-225 1.1 82.8
-225 1.3 83.5
-215 1.1 84.7
-215 1.3 85.0
-220 1.2 84.1
-220 1.2 84.5
-220 1.2 83.9
-220 1.2 84.3
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Exercises

11.4. For the first-order model

̂𝑦 = 60 + 1.5𝑥1 − 0.8𝑥2 + 2.0𝑥3

find the path of steepest ascent. The variables are coded as −1 ≤ 𝑥𝑖 ≤ 1
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Exercises

11.5. The region of experimentation for three factors are time (
40 ≤ 𝑇1 ≤ 80 min ), temperature (200 ≤ 𝑇2 ≤ 300∘C), and pressure (
20 ≤ 𝑃 ≤ 50psig ). A first-order model in coded variables has been fit to
yield data from a 23 design. The model is

̂𝑦 = 30 + 5𝑥1 + 2.5𝑥2 + 3.5𝑥3

Is the point 𝑇1 = 85, 𝑇2 = 325, 𝑃 = 60 on the path of steepest ascent?
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