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13.1 Introduction

Throughout most of this book we have assumed that the factors in an
experiment were fixed factors, that is, the levels of the factors used by
the experimenter were the specific levels of interest.

The implication of this, of course, is that the statistical inferences made
about these factors are confined to the specific levels studied.

That is, if three material types are investigated as in the battery life
experiment of Example 5.1, our conclusions are valid only about those
specific material types.
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13.1 Introduction

A variation of this occurs when the factor or factors are quantitative. In
these situations, we often use a regression model relating the response to
the factors to predict the response over the region spanned by the factor
levels used in the experimental design.

Several examples of this were presented in Chapters 5 through 9. In
general, with a fixed effect, we say that the inference space of the
experiment is the specific set of factor levels investigated.
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13.1 Introduction

In some experimental situations, the factor levels are chosen at random
from a larger population of possible levels, and the experimenter wishes to
draw conclusions about the entire population of levels, not just those that
were used in the experimental design.

In this situation, the factor is said to be a random factor.

The random effect model was introduced in Chapter 3 for a single-factor
experiment, and we used that to introduce the random effects model for
the analysis of variance and components of variance.
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13.1 Introduction

For example: a company has 50 machines that make cardboard cartons
for canned goods, and they want to understand the variation in strength of
the cartons.

They choose ten machines at random from the 50 and make 40 cartons on
each machine, assigning 400 lots of feedstock cardboard at random to the
ten chosen machines.

The resulting cartons are tested for strength. This is a completely
randomized design, with ten treatments and 400 units.
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13.1 Introduction

Fixed Effects Model

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜖𝑖𝑗
𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2)

𝜇: overall mean
𝜏𝑖: fixed effect of treatment 𝑖
𝜖𝑖𝑗: random error
𝜏𝑖 are fixed unknown
parameters

Random Effects Model

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜖𝑖𝑗
𝜏𝑖 ∼ 𝑁(0, 𝜎2

𝜏)
𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2)

𝜇: overall mean
𝜏𝑖: random effect of treatment 𝑖
𝜖𝑖𝑗: random error
𝜏𝑖 are random variables

Notice that we still decompose the model into: Overall mean (𝜇),
Treatment effect (𝜏𝑖), Random error (𝜖𝑖𝑗)

Why Fixed-Effects Assumptions Don’t Make Sense in Random
Effects Model?
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13.1 Introduction

1. Treatment levels are not fixed but randomly sampled

In the fixed-effects model, the treatment levels (e.g., different brands,
machines, or methods) are specifically chosen and of interest.
In the random-effects model, these levels are assumed to be a
random sample from a larger population of possible treatments.
Therefore, estimating individual treatment effects (𝜏𝑖) is less
meaningful — we care more about the variation among treatments,
not their specific values.
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13.1 Introduction

2. The focus shifts from estimation to generalization

In fixed-effects, we want to compare specific treatment effects.
In random-effects, we aim to generalize to the broader population of
treatments.
So, we’re more interested in estimating variance components (like
𝜎2

𝜏) to understand how much treatments vary, not just how they
differ.
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13.1 Introduction

3. Inference is about variance components

In random-effects, variability in treatment levels is treated as another
source of random variation.
This affects how we partition the total variance and how we
perform statistical inference (like testing and confidence intervals).
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13.1 Introduction

In this chapter, we focus on methods for the design and analysis of
factorial experiments with random factors.

In Chapter 14, we will present nested and split-plot designs, two
situations where random factors are frequently encountered in practice.
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Review: Random Effects Model

Random effects model is defined only for the random factors, e.g.

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜖𝑖𝑗, 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑛

where both 𝜏𝑖 and 𝜖𝑖𝑗 are random variables (𝜏𝑖 is not parameter),
which are assumed to follow 𝒩(0, 𝜎2

𝜏) and 𝒩(0, 𝜎2), respectively.

𝜏𝑖 and 𝜖𝑖𝑗 are independent

Variance structure

cov(𝑦𝑖𝑗, 𝑦𝑖′𝑗′) =
⎧{
⎨{⎩

𝜎2
𝜏 + 𝜎2 if 𝑖 = 𝑖′, 𝑗 = 𝑗′

𝜎2
𝜏 if 𝑖 = 𝑖′, 𝑗 ≠ 𝑗

0 if 𝑖 ≠ 𝑖′

𝜎2
𝜏 and 𝜎2 are known as variance components
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Review: Random Effects Model

The parameters of the random effects model are the overall mean 𝜇, the
error variance 𝜎2, and the variance of the treatment effects 𝜎2

𝜏 ; the
treatment effects 𝜏𝑖 are random variables, not parameters.

We want to make inferences about these parameters; we are not so
interested in making inferences about the 𝜏𝑖 ’s and 𝜖𝑖𝑗 ’s.

Typical inferences would be point estimates or confidence intervals for the
variance components, or a test of the null hypothesis that the treatment
variance 𝜎2

𝜏 is 0
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Review: Random Effects Model

Hypothesis considered for the fixed effects model

𝐻0 ∶ no difference between treatment levels

is no longer useful for the random effects model

For random effects model the hypothesis regarding no treatment
effects is defined as

𝐻0 ∶ 𝜎2
𝜏 = 0 𝑣𝑠 𝐻1 ∶ 𝜎2

𝜏 > 0

Md Rasel Biswas Chapter 13 16 / 75



Review: Random Effects Model

For random effects model, the sum of squares identity

𝑆𝑆𝑇 = 𝑆𝑆𝑇 𝑟𝑒𝑎𝑡 + 𝑆𝑆𝐸

remains valid

It can be shown

𝐸(𝑀𝑆𝑇 𝑟𝑒𝑎𝑡) = 𝜎2 + 𝑛𝜎2
𝜏 and 𝐸(𝑀𝑆𝐸) = 𝜎2

Under the null hypothesis 𝐻0 ∶ 𝜎2
𝜏 = 0, the statistic

𝐹0 = 𝑀𝑆𝑇 𝑟𝑒𝑎𝑡
𝑀𝑆𝐸

follows a 𝐹 -distribution with (𝑎 − 1) and 𝑎(𝑛 − 1) degrees of freedom
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Review: Random Effects Model

Beside hypothesis testing, estimation of random effects parameters is
also of interest in analyzing random effects models

We have

𝐸(𝑀𝑆𝑇 𝑟𝑒𝑎𝑡) = 𝜎2 + 𝑛𝜎2
𝜏 and 𝐸(𝑀𝑆𝐸) = 𝜎2

so the unbiased estimators of 𝜎2 and 𝜎2
𝜏 are

�̂�2 = 𝑀𝑆𝐸 and �̂�2
𝜏 = 𝑀𝑆𝑇 𝑟𝑒𝑎𝑡 − 𝑀𝑆𝐸

𝑛
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Review: Random Effects Model

CI of 𝜎2 can be constructed using the result

𝑎(𝑛 − 1)𝑀𝑆𝐸
𝜎2 ∼ 𝜒2

𝑎(𝑛−1)

We can write the 100(1 − 𝛼)% CI

pr[𝜒2
𝑎(𝑛−1),𝛼/2 ≤ 𝑎(𝑛 − 1)𝑀𝑆𝐸

𝜎2 ≤ 𝜒2
𝑎(𝑛−1),1−𝛼/2] = 1 − 𝛼

pr[𝑎(𝑛 − 1)𝑀𝑆𝐸
𝜒2

𝑎(𝑛−1),1−𝛼/2
≤ 𝜎2 ≤ 𝑎(𝑛 − 1)𝑀𝑆𝐸

𝜒2
𝑎(𝑛−1),𝛼/2

] = 1 − 𝛼
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Review: Random Effects Model

The CI for 𝜎2
𝜏 is not straight forward, but it is easy to obtain the CI

for 𝜎2
𝜏/(𝜎2 + 𝜎2

𝜏) and 𝜎2
𝜏/𝜎2 using the result

𝑀𝑆𝑇 𝑟𝑒𝑎𝑡/(𝑛𝜎2
𝜏 + 𝜎2)

𝑀𝑆𝐸/𝜎2 ∼ 𝐹𝑎−1,𝑎(𝑛−1)
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Example 3.11

A textile company weaves a fabric on a large number of looms. It would
like the looms to be homogeneous so that it obtains a fabric of uniform
strength. The process engineer suspects that, in addition to the usual
variation in strength within samples of fabric from the same loom, there
may also be significant variations in strength between looms. To
investigate this, she selects four looms at random and makes four strength
determinations on the fabric manufactured on each loom. This experiment
is run in random order, and the data obtained are shown in Table 3.17.
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Example 3.11

The standard ANOVA partition of the sum of squares is appropriate.
There is nothing new in terms of computing.
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Example 3.11

From the ANOVA, we conclude that the looms in the plant differ
significantly.

The variance components are estimated by �̂�2 = 1.90 and

�̂�2
𝜏 = 29.73 − 1.90

4 = 6.96

Therefore, the variance of any observation on strength is estimated by

�̂�𝑦 = �̂�2 + �̂�2
𝜏 = 1.90 + 6.96 = 8.86.

Most of this variability is attributable to differences between looms.
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Subsection 2

13.2 The Two-Factor Factorial with Random Factors
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13.2 The Two-Factor Factorial with Random Factors
Two factors 𝐴 and 𝐵, 𝑎 levels of 𝐴 and 𝑏 levels of 𝐵 are randomly
selected in the experiment. The model

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘,

where 𝜏𝑖, 𝛽𝑗, (𝜏𝛽)𝑖𝑗, and 𝜖𝑖𝑗𝑘 are random
Assumptions

𝜏𝑖 ∼ 𝒩(0, 𝜎2
𝜏), 𝛽𝑗 ∼ 𝒩(0, 𝜎2

𝛽), (𝜏𝛽)𝑖𝑗 ∼ 𝒩(0, 𝜎2
𝜏𝛽), 𝜖𝑖𝑗𝑘 ∼ 𝒩(0, 𝜎2)

𝑉 (𝑦𝑖𝑗𝑘) = 𝜎2
𝜏 + 𝜎2

𝛽 + 𝜎2
𝜏𝛽 + 𝜎2

Hypotheses of interest

(𝑎) 𝐻0 ∶ 𝜎2
𝜏 = 0 against 𝐻1 ∶ 𝜎2

𝜏 > 0
(𝑏) 𝐻0 ∶ 𝜎2

𝛽 = 0 against 𝐻1 ∶ 𝜎2
𝛽 > 0

(𝑐) 𝐻0 ∶ 𝜎2
𝜏𝛽 = 0 against 𝐻1 ∶ 𝜎2

𝜏𝛽 > 0
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13.2 The Two-Factor Factorial with Random Factors
The form of the test statistics depend on the expected mean
squares

Expected mean squares

𝐸(𝑀𝑆𝐴) = 𝜎2 + 𝑛𝜎2
𝜏𝛽 + 𝑏𝑛𝜎2

𝜏
𝐸(𝑀𝑆𝐵) = 𝜎2 + 𝑛𝜎2

𝜏𝛽 + 𝑎𝑛𝜎2
𝛽

𝐸(𝑀𝑆𝐴𝐵) = 𝜎2 + 𝑛𝜎2
𝜏𝛽

𝐸(𝑀𝑆𝐸) = 𝜎2

Test statistic for 𝐻0 ∶ 𝜎2
𝜏𝛽 = 0

𝐹0 = 𝑀𝑆𝐴𝐵
𝑀𝑆𝐸

∼ 𝐹(𝑎−1)(𝑏−1),𝑎𝑏(𝑛−1)
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13.2 The Two-Factor Factorial with Random Factors

Expected mean squares

𝐸(𝑀𝑆𝐴) = 𝜎2 + 𝑛𝜎2
𝜏𝛽 + 𝑏𝑛𝜎2

𝜏
𝐸(𝑀𝑆𝐵) = 𝜎2 + 𝑛𝜎2

𝜏𝛽 + 𝑎𝑛𝜎2
𝛽

𝐸(𝑀𝑆𝐴𝐵) = 𝜎2 + 𝑛𝜎2
𝜏𝛽

𝐸(𝑀𝑆𝐸) = 𝜎2

Test statistic for 𝐻0 ∶ 𝜎2
𝜏 = 0

𝐹0 = 𝑀𝑆𝐴
𝑀𝑆𝐴𝐵

∼ 𝐹(𝑎−1),(𝑎−1)(𝑏−1)
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13.2 The Two-Factor Factorial with Random Factors

Expected mean squares
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Test statistic for 𝐻0 ∶ 𝜎2
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𝑀𝑆𝐴𝐵

∼ 𝐹(𝑏−1),(𝑎−1)(𝑏−1)
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13.2 The Two-Factor Factorial with Random Factors

Notice that these test statistics are not the same as those used if both
factors 𝐴 and 𝐵 are fixed.

The expected mean squares are always used as a guide to test statistic
construction.

In many experiments involving random factors, interest centers at least as
much on estimating the variance components as on hypothesis testing.
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13.2 The Two-Factor Factorial with Random Factors

Estimates of the variance components

�̂�2 = 𝑀𝑆𝐸

�̂�2
𝜏𝛽 = 𝑀𝑆𝐴𝐵 − 𝑀𝑆𝐸

𝑛
�̂�2

𝜏 = 𝑀𝑆𝐴 − 𝑀𝑆𝐸
𝑏𝑛

�̂�2
𝛽 = 𝑀𝑆𝐵 − 𝑀𝑆𝐸

𝑎𝑛
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A Measurement Systems Capability Study

A Measurement System Capability Study (also called Gauge R&R
study, where R&R stands for Repeatability and Reproducibility) is a
key part of quality control and process improvement — especially in
manufacturing and lab settings.

Gauge R&R study evaluates how much variation in your
measurement data is coming from:

▶ The actual process or product you’re measuring
▶ The measurement system itself (which includes the instrument and

the operator)

In short, it tells you: “Can we trust our measurement system?”
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A Measurement Systems Capability Study

Main Goals
Assess how precise and reliable your measurements are
Quantify measurement error
Determine whether your measurement system is suitable for use in a
process control or quality monitoring environment
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A Measurement Systems Capability Study

Two Key Components
1 Repeatability Variation when the same operator measures the same

item multiple times using the same instrument.
2 Reproducibility Variation between operators (or appraisers), i.e., when

different people measure the same item using the same instrument.
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A Measurement Systems Capability Study

Basic Experimental Setup

To perform a Gauge R&R study, you typically:
Choose 𝑛 parts from the process (covering the process range)
Have 𝑚 operators
Each operator measures each part 𝑟 times (repeated measures)
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A Measurement Systems Capability Study

(Example 13.1)

A typical gauge R&R experiment is shown in Table 13.1. An instrument or
gauge is used to measure a critical dimension on a part.

Twenty parts have been selected from the production process, and three
randomly selected operators measure each part twice with this gauge.

The order in which the measurements are made is completely randomized,
so this is a two-factor factorial experiment with design factors parts and
operators, with 2 replications.

Both parts and operators are random factors. So, we’re more interested in
estimating variance components than testing specific factor levels.
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A Measurement Systems Capability Study
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A Measurement Systems Capability Study

Let:
𝑦𝑖𝑗𝑘 = 𝜇 + 𝑃𝑖 + 𝑂𝑗 + (𝑃𝑂)𝑖𝑗 + 𝜖𝑖𝑗𝑘

Where:

𝑦𝑖𝑗𝑘: the k-th measurement of part 𝑖 by operator 𝑗
𝜇: overall mean
𝑃𝑖 ∼ 𝑁(0, 𝜎2

𝑃 ): random effect of the i-th part
𝑂𝑗 ∼ 𝑁(0, 𝜎2

𝑂): random effect of the j-th operator
(𝑃 𝑂)𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝑃𝑂): interaction between part and operator
𝜖𝑖𝑗𝑘 ∼ 𝑁(0, 𝜎2): repeatability (pure measurement error)
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A Measurement Systems Capability Study
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A Measurement Systems Capability Study

Estimating Variance Components

Using Method of Moments we can estimate:

�̂�2 (repeatability) = 0.99

�̂�2
𝑃 (part variation) = 62.39 − 0.71

(3)(2) = 10.28

�̂�2
𝑂 (operator variation) = 1.31 − 0.71

(20)(2) = 0.015

�̂�2
𝑃𝑂 (part-operator interaction) = 0.71 − 0.99

2 = −0.14
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A Measurement Systems Capability Study

As interaction is not significant, the reduced model is
𝑦𝑖𝑗𝑘 = 𝜇 + 𝑃𝑖 + 𝑂𝑗 + 𝜖𝑖𝑗𝑘
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A Measurement Systems Capability Study

�̂�2
𝑃 = 62.39 − 0.88

(3)(2) = 10.25

�̂�2
𝑂 (reproducibility) = 1.31 − 0.88

(20)(2) = 0.0108

�̂�2 (repeatability) = 0.88
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A Measurement Systems Capability Study

Finally, we could estimate the variance of the gauge as the sum of the
variance component estimates �̂�2 and �̂�2

𝑂 as

�̂�2
gauge = �̂�2 + �̂�2

𝑂
= 0.88 + 0.0108
= 0.8908

The variability in the gauge appears small relative to the variability in the
product.

This is generally a desirable situation, implying that the gauge is capable
of distinguishing among different grades of product.
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Subsection 3

13.3 The Two-Factor Mixed Model
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13.3 The Two-Factor Mixed Model

Suppose the levels of the factor 𝐴 are fixed and the levels of factor 𝐵
are random
The two-factor mixed model can be expressed as

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘,

where 𝜏𝑖 is fixed, and 𝛽𝑗, (𝜏𝛽)𝑖𝑗 and 𝜖𝑖𝑗 are random
Assumptions

𝛽𝑗 ∼ 𝒩(0, 𝜎2
𝛽), 𝜖𝑖𝑗 ∼ 𝒩(0, 𝜎2), (𝜏𝛽)𝑖𝑗 ∼ 𝒩(0, 𝜎2

𝜏𝛽(𝑎 − 1)/𝑎)

Restrictions: ∑𝑖 𝜏𝑖 = 0, ∑𝑖(𝜏𝛽)𝑖𝑗 = 0
This type of mixed model is known as restricted mixed model
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13.3 The Two-Factor Mixed Model

The expected value of the mean squares

𝐸(𝑀𝑆𝐴) = 𝜎2 + 𝑛𝜎2
𝜏𝛽 + 𝑏𝑛 ∑𝑖 𝜏2

𝑖
𝑎 − 1

𝐸(𝑀𝑆𝐵) = 𝜎2 + 𝑎𝑛𝜎2
𝛽

𝐸(𝑀𝑆𝐴𝐵) = 𝜎2 + 𝑛𝜎2
𝜏𝛽

𝐸(𝑀𝑆𝐸) = 𝜎2

Test statistic for 𝐻0 ∶ 𝜏𝑖 = 0, ∀ 𝑖

𝐹0 = 𝑀𝑆𝐴
𝑀𝑆𝐴𝐵

∼ 𝐹𝑎−1,(𝑎−1)(𝑏−1)
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13.3 The Two-Factor Mixed Model

The expected value of the mean squares
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𝜏𝛽
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Test statistic for 𝐻0 ∶ 𝜎2
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∼ 𝐹𝑏−1,𝑎𝑏(𝑛−1)
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13.3 The Two-Factor Mixed Model

The expected value of the mean squares

𝐸(𝑀𝑆𝐴) = 𝜎2 + 𝑛𝜎2
𝜏𝛽 + 𝑏𝑛 ∑𝑖 𝜏2

𝑖
𝑎 − 1

𝐸(𝑀𝑆𝐵) = 𝜎2 + 𝑎𝑛𝜎2
𝛽

𝐸(𝑀𝑆𝐴𝐵) = 𝜎2 + 𝑛𝜎2
𝜏𝛽

𝐸(𝑀𝑆𝐸) = 𝜎2

Test statistic for 𝐻0 ∶ 𝜎2
𝜏𝛽 = 0

𝐹0 = 𝑀𝑆𝐴𝐵
𝑀𝑆𝐸

∼ 𝐹(𝑎−1)(𝑏−1),𝑎𝑏(𝑛−1)
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13.3 The Two-Factor Mixed Model

In the mixed model, it is possible to estimate the fixed factor effects as
before which are shown here:

̂𝜇 = ̄𝑦…
̂𝜏𝑖 = ̄𝑦𝑖.. − ̄𝑦… 𝑖 = 1, 2, … , 𝑎

The variance components can be estimated using the analysis of variance
method by equating the expected mean squares to their observed values:

�̂�2
𝛽 = 𝑀𝑆𝐵 − 𝑀𝑆𝐸

𝑎𝑛
�̂�2

𝜏𝛽 = 𝑀𝑆𝐴𝐵 − 𝑀𝑆𝐸
𝑛

�̂�2 = 𝑀𝑆𝐸
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13.3 The Two-Factor Mixed Model

Unrestricted mixed models: no restriction of the random effects
terms

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛾𝑗 + (𝛼𝛾)𝑖𝑗 + 𝜖𝑖𝑗𝑘,
where 𝛼𝑖’s are fixed effects such that ∑𝑖 𝛼𝑖 = 0, 𝛾𝑗 ∼ 𝒩(0, 𝜎2

𝛾),
(𝛼𝛾)𝑖𝑗 ∼ 𝒩(0, 𝜎2

𝑖𝑗), and 𝜖𝑖𝑗 ∼ 𝒩(0, 𝜎2).
The expected mean squares

𝐸(𝑀𝑆𝐴) = 𝜎2 + 𝑛𝜎2
𝛼𝛾 + 𝑏𝑛 ∑𝑖 𝛼2

𝑖
𝑎 − 1

𝐸(𝑀𝑆𝐵) = 𝜎2 + 𝑛𝜎2
𝛼𝛾 + 𝑎𝑛𝜎2

𝛾
𝐸(𝑀𝑆𝐴𝐵) = 𝜎2 + 𝑛𝜎2

𝛼𝛾
𝐸(𝑀𝑆𝐸) = 𝜎2
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Subsection 4

13.4 Rules for Expected Mean Squares
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13.4 Rules for Expected Mean Squares

An important part of experimental design problem is conducting the
analysis of variance.

This involves determining the sum of squares for each component in the
model and number of degrees of freedom associated with each sum of
squares.

To construct appropriate test statistics, the expected mean squares must
be determined.
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13.4 Rules for Expected Mean Squares

By examining the expected mean squares, one may develop the
appropriate statistic for testing hypotheses about any model parameter.

The test statistic is a ratio of mean squares that is chosen such that the
expected value of the numerator mean square differs from the expected
value of the denominator mean square only by the variance component
or the fixed factor in which we are interested.

Md Rasel Biswas Chapter 13 52 / 75



13.4 Rules for Expected Mean Squares

Rule 1. The error term in the model is 𝜖𝑖𝑗…𝑚, where the subscript 𝑚
denotes the replication subscript. For the two-factor model, this rule
implies that the error term is 𝜖𝑖𝑗𝑘. The variance component
associated with 𝜖𝑖𝑗…𝑚 is 𝜎2.
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13.4 Rules for Expected Mean Squares

Rule 2. In addition to an overall mean (𝜇) and an error term 𝜖𝑖𝑗 … 𝑚,
the model contains all the main effects and any interactions that the
experimenter assumes exist. If all possible interactions between 𝑘
factors exist, then there are ( 𝑘

2 ) two-factor interactions, ( 𝑘
3 )

three-factor interactions, … , 1𝑘-factor interaction. If one of the
factors in a term appears in parentheses, then there is no interaction
between that factor and the other factors in that term.
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13.4 Rules for Expected Mean Squares

Rule 3. For each term in the model, divide the subscripts into three
classes:

▶ live - those subscripts that are present in the term and are not in the
parenthesis

▶ dead - those subscripts that are present in the term and are in the
parenthesis

▶ absent - those subscripts that are present in the model but not in that
particular term

E.g. for two-factor fixed effects model, in (𝜏𝛽)𝑖𝑗, 𝑖 and 𝑗 are live, and 𝑘 is
absent; in 𝜖(𝑖𝑗)𝑘, 𝑘 is live, and 𝑖 and 𝑗 are dead

(We haven’t seen models with dead subscripts, but we will encounter such
models later.)
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13.4 Rules for Expected Mean Squares

Rule 4. Degrees of freedom. The number of degrees of freedom for
any term in the model is the product of the number of levels
associated with each dead subscript and the number of levels minus 1
with each live subscript.

E.g. the number of degrees of freedom associated with (𝜏𝛽)𝑖𝑗 is
(𝑎 − 1)(𝑏 − 1), and the number of degrees of freedom associated with
𝜖(𝑖𝑗)𝑘 is 𝑎𝑏(𝑛 − 1).
The number of degrees of freedom for error is obtained by subtracting the
sum of all other degrees of freedom from 𝑁 − 1, where 𝑁 is the total
number of observations.
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13.4 Rules for Expected Mean Squares

Rule 5. Each term in the model has either a variance component
(random effect) or a fixed factor (fixed effect) associated with it.

If the interaction term contain at least one random effect, the entire effect
is termed is considered as random

A variance component has Greek letters as subscripts to identify the
particular random effect, e.g. 𝜎2

𝛽 is the variance component corresponding
to random factor 𝐵
A fixed effect always represented by the sum of squares of the model
components associated with that factor divided by its degrees of freedom,
e.g. ∑𝑖 𝜏2

𝑖 /(𝑎 − 1) for factor 𝐴 when it is fixed

Md Rasel Biswas Chapter 13 57 / 75



13.4 Rules for Expected Mean Squares

Rule 6. There is an expected mean square for each model
component. The expected mean square for error is 𝐸 (𝑀𝑆𝐸) = 𝜎2.

In case of the restricted model, for every other model term, the expected
mean square contains

𝜎2 plus
either the variance component or the fixed effect component for that
term, plus
those components for all other model terms that contain the effect in
question and that involve no interactions with other fixed effects.

The coefficient of each variance component or fixed effect is the number
of observations at each distinct value of that component.
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13.4 Rules for Expected Mean Squares

To illustrate for the case of the two-factor fixed effects model, consider
finding the interaction expected mean square, 𝐸 (𝑀𝑆𝐴𝐵).

The expected mean square will contain only the fixed effect for the
𝐴𝐵 interaction (because no other model terms contain 𝐴𝐵) plus 𝜎2,
and the fixed effect for 𝐴𝐵 will be multiplied by 𝑛 because there are
𝑛 observations at each distinct value of the interaction component
(the 𝑛 observations in each cell).
Thus, the expected mean square for 𝐴𝐵 is

𝐸 (𝑀𝑆𝐴𝐵) = 𝜎2 +
𝑛 ∑𝑎

𝑖=1 ∑𝑏
𝑗=1(𝜏𝛽)2

𝑖𝑗
(𝑎 − 1)(𝑏 − 1)
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13.4 Rules for Expected Mean Squares

As another illustration of the two-factor fixed effects model, the
expected mean square for the main effect of 𝐴 would be

𝐸 (𝑀𝑆𝐴) = 𝜎2 + 𝑏𝑛 ∑𝑎
𝑖=1 𝜏2

𝑖
(𝑎 − 1)

The multiplier in the numerator is 𝑏𝑛 because there are 𝑏𝑛
observations at each level of 𝐴. The 𝐴𝐵 interaction term is not
included in the expected mean square because while it does include
the effect in question (𝐴), factor 𝐵 is a fixed effect.
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13.4 Rules for Expected Mean Squares

To illustrate how Rule 6 applies to a model with random effects, consider
the two-factor random model. The expected mean square for the 𝐴𝐵
interaction would be

𝐸 (𝑀𝑆𝐴𝐵) = 𝜎2 + 𝑛𝜎2
𝜏𝛽

and the expected mean square for the main effect of 𝐴 would be

𝐸 (𝑀𝑆𝐴) = 𝜎2 + 𝑛𝜎2
𝜏𝛽 + 𝑏𝑛𝜎2

𝜏

Note that the variance component for the 𝐴𝐵 interaction term is included
because 𝐴 is included in 𝐴𝐵 and 𝐵 is a random effect.
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13.4 Rules for Expected Mean Squares

Two factor fixed effects model

𝐸 (𝑀𝑆𝐴) = 𝜎2 + 𝑏𝑛 ∑𝑎
𝑖=1 𝜏2

𝑖
(𝑎 − 1)

𝐸 (𝑀𝑆𝐵) = 𝜎2 +
𝑎𝑛 ∑𝑏

𝑗=1 𝛽2
𝑗

𝑏 − 1

𝐸 (𝑀𝑆𝐴𝐵) = 𝜎2 +
𝑛 ∑𝑎

𝑖=1 ∑𝑏
𝑗=1(𝜏𝛽)2

𝑖𝑗
(𝑎 − 1)(𝑏 − 1)

𝐸 (𝑀𝑆𝐸) = 𝜎2
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13.4 Rules for Expected Mean Squares

Two factor random model

𝐸 (𝑀𝑆𝐴) = 𝜎2 + 𝑛𝜎2
𝜏𝛽 + 𝑏𝑛𝜎2

𝜏
𝐸 (𝑀𝑆𝐵) = 𝜎2 + 𝑛𝜎2

𝜏𝛽 + 𝑎𝑛𝜎2
𝛽

𝐸 (𝑀𝑆𝐴𝐵) = 𝜎2 + 𝑛𝜎2
𝜏𝛽

𝐸 (𝑀𝑆𝐸) = 𝜎2
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13.4 Rules for Expected Mean Squares

Restricted form of two factor mixed model

𝐸 (𝑀𝑆𝐴) = 𝜎2 + 𝑛𝜎2
𝜏𝛽 + 𝑏𝑛 ∑𝑎

𝑖=1 𝜏2
𝑖

𝑎 − 1
𝐸 (𝑀𝑆𝐵) = 𝜎2 + 𝑎𝑛𝜎2

𝛽
𝐸 (𝑀𝑆𝐴𝐵) = 𝜎2 + 𝑛𝜎2

𝜏𝛽
𝐸 (𝑀𝑆𝐸) = 𝜎2
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13.4 Rules for Expected Mean Squares

Rule 6 can be easily modified to give expected mean squares for the
unrestricted form of the mixed model. Simply include the term for the
effect in question, plus all the terms that contain this effect as long as
there is at least one random factor.

Unrestricted form of two factor mixed model.

𝐸 (𝑀𝑆𝐴) = 𝜎2 + 𝑛𝜎2
𝜏𝛽 + 𝑏𝑛 ∑𝑎

𝑖=1 𝜏2
𝑖

𝑎 − 1
𝐸 (𝑀𝑆𝐵) = 𝜎2 + 𝑛𝜎2

𝜏𝛽 + 𝑎𝑛𝜎2
𝛽

𝐸 (𝑀𝑆𝐴𝐵) = 𝜎2 + 𝑛𝜎2
𝜏𝛽

𝐸 (𝑀𝑆𝐸) = 𝜎2
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Subsection 5

13.5 Approximate F-Tests
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13.5 Approximate F-Tests

Consider a three-factor factorial experiment with a levels of factor 𝐴, 𝑏
levels of factor 𝐵, 𝑐 levels of factor 𝐶, and 𝑛 replicates.

First, assume that all the factors are fixed.

𝑦𝑖𝑗𝑘𝑙 =𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝛾𝑘 + (𝜏𝛽)𝑖𝑗 + (𝜏𝛾)𝑖𝑘 + (𝛽𝛾)𝑗𝑘

+ (𝜏𝛽𝛾)𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘𝑙

⎧{
⎨{⎩

𝑖 = 1, 2, … , 𝑎
𝑗 = 1, 2, … , 𝑏
𝑘 = 1, 2, … , 𝑐
𝑙 = 1, 2, … , 𝑛

Then the analysis of this design is given below
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13.5 Approximate F-Tests
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13.5 Approximate F-Tests

Now, assume that all the three factors are random. The three-factor
random effects model is

𝑦𝑖𝑗𝑘𝑙 = 𝜏𝑖 + 𝛽𝑗 + 𝛾𝑘 + (𝜏𝛽)𝑖𝑗 + (𝜏𝛾)𝑖𝑘 + (𝛽𝛾)𝑗𝑘
+ (𝜏𝛽𝛾)𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘𝑙

Assumptions:

𝜏𝑖 ∼ 𝒩(0, 𝜎2
𝜏), 𝛽𝑗 ∼ 𝒩(0, 𝜎2

𝛽), 𝛾𝑘 ∼ 𝒩(0, 𝜎2
𝛾)

(𝜏𝛽)𝑖𝑗 ∼ 𝒩(0, 𝜎2
𝜏𝛽), (𝜏𝛾)𝑖𝑘 ∼ 𝒩(0, 𝜎2

𝜏𝛾), (𝛽𝛾)𝑗𝑘 ∼ 𝒩(0, 𝜎2
𝛽𝛾)

(𝜏𝛽𝛾)𝑖𝑗𝑘 ∼ 𝒩(0, 𝜎2
𝜏𝛽𝛾)

𝜖𝑖𝑗𝑘 ∼ 𝒩(0, 𝜎2)
All the random effects are pair-wise independent
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13.5 Approximate F-Tests

The expected mean squares assuming that all the factors are random are

What is the test statistic for 𝐻0 ∶ 𝜎2
𝜏 = 0?
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13.5 Approximate F-Tests

For three-factor random effects model, no exact test statistic for
testing certain effects, e.g. for 𝐻0 ∶ 𝜎2

𝜏 = 0 one possible test statistic

𝐹0 = MS𝐴
MS𝐴𝐵𝐶

=
𝜎2 + 𝑐𝑛𝜎2

𝜏𝛽 + 𝑏𝑛𝜎2
𝜏𝛾 + 𝑛𝜎2

𝜏𝛽𝛾 + 𝑏𝑐𝑛𝜎2
𝜏

𝜎2 + 𝑛𝜎2
𝜏𝛽𝛾

,

which would be useful if the interactions 𝜎2
𝜏𝛽 and 𝜎2

𝜏𝛾 are negligible.
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13.5 Approximate F-Tests

If we cannot assume that the certain interactions are negligible and
we need to make inferences about those effects for which exact tests
do not exist, Satterthwaite’ method can be used.

Satterthwaite’s method uses the linear combinations of mean
squares, for example

𝑀𝑆′ = 𝑀𝑆𝑟 + ⋯ + 𝑀𝑆𝑠
𝑀𝑆′′ = 𝑀𝑆𝑢 + ⋯ + 𝑀𝑆𝑣

are chosen so that 𝐸 (𝑀𝑆′) − 𝐸(𝑀𝑆′′) is equal to a multiple of the
effect (the model parameter or variance component) considered in the
null hypothesis.
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13.5 Approximate F-Tests

Then the test statistic would be

𝐹 = 𝑀𝑆′

𝑀𝑆′′

which is distributed approximately as 𝐹𝑝,𝑞, where

𝑝 = (𝑀𝑆𝑟 + ⋯ + 𝑀𝑆𝑠)2

𝑀𝑆2𝑟 /𝑓𝑟 + ⋯ + 𝑀𝑆2𝑠 /𝑓𝑠

𝑞 = (𝑀𝑆𝑢 + ⋯ + 𝑀𝑆𝑣)2

𝑀𝑆2𝑢/𝑓𝑢 + ⋯ + 𝑀𝑆2𝑣/𝑓𝑣
In 𝑝 and 𝑞, 𝑓𝑖 is the number of degrees of freedom associated with the
mean square 𝑀𝑆𝑖
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E.g.

E.g. For our example, for testing the null hypothesis, 𝐻0 ∶ 𝜎2
𝜏 = 0, we can

use the test statistic

𝐹 = 𝑀𝑆𝐴 + 𝑀𝑆𝐴𝐵𝐶
𝑀𝑆𝐴𝐵 + 𝑀𝑆𝐴𝐶

=
2𝜎2 + 𝑐𝑛𝜎2

𝜏𝛽 + 𝑏𝑛𝜎2
𝜏𝛾 + 2𝑛𝜎2

𝜏𝛽𝛾 + 𝑏𝑐𝑛𝜎2
𝜏

2𝜎2 + 2𝜎2
𝜏𝛽𝛾 + 𝑏𝑛𝜎2𝜏𝛾 + 𝑐𝑛𝜎2

𝜏𝛽
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E.g.

Under 𝐻0, the statistic 𝐹 follows 𝐹 -distribution with 𝑝 and 𝑞 degrees
of freedom, where

𝑝 = (𝑀𝑆𝐴 + 𝑀𝑆𝐴𝐵𝐶)2

(𝑀𝑆2
𝐴/𝑓𝐴) + (𝑀𝑆2

𝐴𝐵𝐶/𝑓𝐴𝐵𝐶)

𝑞 = (𝑀𝑆𝐴𝐵 + 𝑀𝑆𝐴𝐶)2

(𝑀𝑆2
𝐴𝐵/𝑓𝐴𝐵) + (𝑀𝑆2

𝐴𝐶/𝑓𝐴𝐶)

and 𝑓𝐴 is degrees of freedom associated with 𝑀𝑆𝐴.
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