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14. Nested and Split-Plot Designs

This chapter introduces two important types of experimental designs, the
nested design and the split-plot design.

Both of these designs find reasonably widespread application in the
industrial use of designed experiments.

They also frequently involve one or more random factors, and so some of
the concepts introduced in Chapter 13 will find application here.
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Subsection 1

14.1 The Two-Stage Nested Design
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14.1 The Two-Stage Nested Design

In a nested design, the levels of one factor (𝐵) is similar to but not
identical to each other at different levels of another factor (𝐴)

Consider a company that purchases material from three suppliers
▶ The material comes in batches
▶ Is the purity of the material uniform?

Experimental design
▶ Select four batches at random from each supplier
▶ Make three purity determinations from each batch
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14.1 The Two-Stage Nested Design
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14.1 The Two-Stage Nested Design

If this were a factorial, then batch 1 would always refer to the same
batch, batch 2 would always refer to the same batch, and so on. This
is clearly not the case because the batches from each supplier are
unique for that particular supplier.

Sometimes we may not know whether a factor is crossed in a factorial
arrangement or nested. If the levels of the factor can be renumbered
arbitrarily as in Figure 14.2, then the factor is nested.
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Statistical Analysis

Statistical model for two-stage nested design

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗(𝑖) + 𝜖(𝑖𝑗)𝑘
⎧{
⎨{⎩

𝑖 = 1, … , 𝑎
𝑗 = 1, … , 𝑏
𝑘 = 1, … , 𝑛

The notation 𝑗(𝑖) indicates that the 𝑗𝑡ℎ level of factor 𝐵 is nested under
the 𝑖𝑡ℎ level of factor 𝐴

Factors 𝐴 and 𝐵 could be fixed and/or random
This is a balanced nested design as equal number of levels of 𝐵
within each level of 𝐴 and equal number of replicates.
No interaction
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Statistical Analysis

Decomposition of sum of squares

∑
𝑖

∑
𝑗

∑
𝑘

(𝑦𝑖𝑗𝑘 − ̄𝑦⋅⋅⋅)2 = ∑
𝑖

∑
𝑗

∑
𝑘

{( ̄𝑦𝑖⋅⋅ − ̄𝑦⋅⋅⋅) + ( ̄𝑦𝑖𝑗⋅ − ̄𝑦𝑖⋅⋅)

+ (𝑦𝑖𝑗𝑘 − ̄𝑦𝑖𝑗⋅)}
2

= 𝑏𝑛 ∑
𝑖

( ̄𝑦𝑖⋅⋅ − ̄𝑦⋅⋅⋅)2 + 𝑛 ∑
𝑖,𝑗

( ̄𝑦𝑖𝑗⋅ − ̄𝑦𝑖⋅⋅)2

∑
𝑖,𝑗,𝑘

(𝑦𝑖𝑗𝑘 − ̄𝑦𝑖𝑗⋅)2

𝑆𝑆𝑇 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵(𝐴) + 𝑆𝑆𝐸

What are the corresponding degrees of freedom and expressions of
mean squares?
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Statistical Analysis

𝑆𝑆𝑇 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵(𝐴) + 𝑆𝑆𝐸
𝑑𝑓 ∶ 𝑎𝑏𝑛 − 1 = 𝑎 − 1 + 𝑎(𝑏 − 1) + 𝑎𝑏(𝑛 − 1)

If the errors are NID (0, 𝜎2), we may divide each sum of squares on the
right of the above equation by its degrees of freedom to obtain
independently distributed mean squares such that the ratio of any two
mean squares is distributed as 𝐹 .
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Statistical Analysis

The appropriate statistics for testing the effects of factors 𝐴 and 𝐵
depend on whether 𝐴 and 𝐵 are fixed or random.

If factors 𝐴 and 𝐵 are fixed, we assume that Σ𝑎
𝑖=1𝜏𝑖 = 0 and

Σ𝑏
𝑗=1𝛽𝑗(𝑖) = 0 (𝑖 = 1, 2, … , 𝑎).

That is, the 𝐴 treatment effects sum to zero, and the 𝐵 treatment effects
sum to zero within each level of 𝐴.
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Statistical Analysis

If 𝐴 and 𝐵 are random, we assume that 𝜏𝑖 is NID(0, 𝜎2
𝜏) and 𝛽𝑗(𝑖) is

𝑁𝐼𝐷 (0, 𝜎2
𝛽).

Mixed models with 𝐴 fixed and 𝐵 random are also widely encountered.
The expected mean squares can be determined by a straightforward
application of the rules in Chapter 13.

The expected mean squares for these three situations is given in the next
table.
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Statistical Analysis

If the levels of 𝐴 and 𝐵 are fixed,
▶ 𝐻0 ∶ 𝜏𝑖 = 0 is tested by 𝑀𝑆𝐴/𝑀𝑆𝐸 and
▶ 𝐻0 ∶ 𝛽𝑗(𝑖) = 0 is tested by 𝑀𝑆𝐵(𝐴)/𝑀𝑆𝐸

If 𝐴 is a fixed factor and 𝐵 is random,
▶ 𝐻0 ∶ 𝜏𝑖 = 0 is tested by 𝑀𝑆𝐴/𝑀𝑆𝐵(𝐴) and
▶ 𝐻0 ∶ 𝜎2

𝛽 = 0 is tested by 𝑀𝑆𝐵(𝐴)/𝑀𝑆𝐸
Finally, if both 𝐴 and 𝐵 are random factors,

▶ 𝐻0 ∶ 𝜎2
𝜏 = 0 is tested by 𝑀𝑆𝐴/𝑀𝑆𝐵(𝐴) and

▶ 𝐻0 ∶ 𝜎2
𝛽 = 0 is tested by 𝑀𝑆𝐵(𝐴)/𝑀𝑆𝐸
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Statistical Analysis

Computing formulas for the sums of squares are given below
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Example 14.1

Consider a company that buys raw material in batches from three different
suppliers. The purity of this raw material varies considerably, which causes
problems in manufacturing the finished product. We wish to determine
whether the variability in purity is attributable to differences between the
suppliers. Four batches of raw material are selected at random from each
supplier, and three determinations of purity are made on each batch.

This is, of course, a two-stage nested design. The data, after coding by
subtracting 93, are shown below.
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Example 14.1

The sums of squares are computed as follows

Md Rasel Biswas Chapter 14 17 / 46



Example 14.1
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Example 14.1

There is no difference in purity among suppliers, but significant
difference in purity among batches (within suppliers)
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Diagnostic checking

For the model 𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗(𝑖) + 𝜖𝑖𝑗𝑘, the estimates of
parameters are

̂𝜇 = ̄𝑦⋅⋅⋅, ̂𝜏𝑖 = ̄𝑦𝑖⋅⋅ − ̄𝑦⋅⋅⋅, ̂𝛽𝑗(𝑖) = ̄𝑦𝑖𝑗⋅ − ̄𝑦𝑖⋅⋅

The fitted model ̂𝑦𝑖𝑗𝑘 = ̂𝜇 + ̂𝜏𝑖 + ̂𝛽𝑗(𝑖) = ̄𝑦𝑖𝑗⋅

The residuals ̂𝜖𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 − ̂𝑦𝑖𝑗𝑘

ANOVA indicates that there is statistically significant batch-to-batch
variability. But, is the variability within batches the same for all
suppliers? The plot of residuals versus supplier can help us answer
this.
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Estimates of Variance Components

For the random effects case, the analysis of variance method can be used
to estimate the variance components 𝜎2, 𝜎2

𝜏 , and 𝜎2
𝛽. Applying the

ANOVA method, we obtain

�̂�2 = 𝑀𝑆𝐸

�̂�2
𝛽 =

𝑀𝑆𝐵(𝐴) − 𝑀𝑆𝐸
𝑛

�̂�2
𝜏 =

𝑀𝑆𝐴 − 𝑀𝑆𝐵(𝐴)
𝑏𝑛
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Estimates of Variance Components

Many applications of nested designs involve a mixed model, with the
main factor (𝐴) fixed and the nested factor (𝐵) random. This is the case
for the problem described in Example 14.1, where suppliers (factor 𝐴) are
fixed, and batches of raw material (factor 𝐵) are random. The effects of
the suppliers may be estimated by

̂𝜏1 = ̄𝑦1.. − ̄𝑦… = −5
12 − 13

36 = −28
36

̂𝜏2 = ̄𝑦2.. − ̄𝑦… = 4
12 − 13

36 = −1
36

̂𝜏3 = ̄𝑦3.. − ̄𝑦… = 14
12 − 13

36 = 29
36
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Estimates of Variance Components

We estimate the variance components as

�̂�2 = 𝑀𝑆𝐸 = 2.64

�̂�2
𝛽 =

𝑀𝑆𝐵(𝐴) − 𝑀𝑆𝐸
𝑛 = 7.77 − 2.64

3 = 1.71

From the analysis in Example 14.1 (in Table 14.4), we know that the 𝜏𝑖
does not differ significantly from zero, whereas the variance component 𝜎2

𝛽
is greater than zero.
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Subsection 2

14.2 The General 𝑚-Stage Nested Design
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14.2 The General 𝑚-Stage Nested Design
Suppose a foundry wishes to investigate the hardness of two different
formulations of a metal alloy. Three heats of each alloy formulation are
prepared, two ingots are selected at random from each heat for testing,
and two hardness measurements are made on each ingot. In this
experiment, heats are nested under the levels of the factor alloy
formulation, and ingots are nested under the levels of the factor heats.
Thus, this is a three-stage nested design with two replicates.
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14.2 The General 𝑚-Stage Nested Design

The model for the general three stage nested design is

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝜏𝑖 + 𝛽𝑗(𝑖) + 𝛾𝑘(𝑖𝑗) + 𝜖(𝑖𝑗𝑘)𝑙

⎧{
⎨{⎩

𝑖 = 1, 2, … , 𝑎
𝑗 = 1, 2, … , 𝑏
𝑘 = 1, 2, … , 𝑐
𝑙 = 1, 2, … , 𝑛

For our example,

𝜏𝑖 is the effect of the 𝑖th alloy formulation,
𝛽𝑗(𝑖) is the effect of the 𝑗th heat within the 𝑖th alloy,
𝛾𝑘(𝑖𝑗) is the effect of the 𝑘th ingot within the 𝑗th heat and 𝑖th alloy,
and
𝜖(𝑖𝑗𝑘)𝑙 is the usual NID (0, 𝜎2) error term.
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Exercise

Given a three-stage nested design

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝜏𝑖 + 𝛽𝑗(𝑖) + 𝛾𝑘(𝑖𝑗) + 𝜖𝑖𝑗𝑘𝑙

Find degrees of freedom and expressions of expected mean squares for
the following situations:

▶ All the factors 𝐴, 𝐵, and 𝐶 are fixed
▶ Factors 𝐴 and 𝐵 are fixed, and 𝐶 is random
▶ Factor 𝐴 is fixed, and 𝐵 and 𝐶 are random
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Exercise
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Subsection 3

14.3 Designs with Both Nested and Factorial Factors
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14.3 Designs with Both Nested and Factorial Factors

Occasionally in a multifactor experiment, some factors are arranged in a
factorial layout and other factors are nested.

We sometimes call these designs nested–factorial designs. The statistical
analysis of one such design with three factors is illustrated in the following
example.
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14.3 Designs with Both Nested and Factorial Factors

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝛾𝑘(𝑗) + (𝜏𝛽)𝑖𝑗 + (𝜏𝛾)𝑖𝑘(𝑗) + 𝜖(𝑖𝑗𝑘)𝑙

⎧{
⎨{⎩

𝑖 = 1, 2, 3
𝑗 = 1, 2
𝑘 = 1, 2, 3, 4
𝑙 = 1, 2
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14.3 Designs with Both Nested and Factorial Factors

Assume that fixtures and layouts are fixed, operators are random – gives a
mixed model (use restricted form)
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Subsection 4

14.4 Split-plot design
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14.4 Split-plot design

The split-plot is a multifactor experiment where it is not possible to
completely randomize the order of the runs

A paper manufacturer is interested in examining the effect of pulp
preparation method and cooking temperature on the tensile
strength of the paper

▶ Three pulp preparation methods
▶ Four different temperatures
▶ Each replicate requires 12 runs
▶ The experimenters want to use three replicates
▶ How many batches of pulp are required?
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14.4 Split-plot design

Pulp preparation methods is a hard-to-change factor

Consider an alternate experimental design:
1 In replicate 1: select a pulp preparation method, prepare a batch

Divide the batch into four sections or samples, and assign one of the
temperature levels to each
Repeat for each pulp preparation method

2 Conduct replicates 2 similarly
3 Conduct replicates 3 similarly
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14.4 Split-plot design

Each replicate (sometimes called blocks) has been divided into three
parts, called the whole plots

Pulp preparation methods is the whole plot treatment

Each whole plot has been divided into four subplots or split-plots

Temperature is the subplot treatment

Generally, the hard-to-change factor is assigned to the whole plots

This design requires only 9 batches of pulp (assuming three replicates)
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14.4 Split-plot design
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14.4 Split-plot design

This is not a randomized block design with three levels of pulp
preparation and four levels of cooking temperature (why?)

To be a randomized block design the order of the experiments within
a block should be completely randomized which is not the case for
our example where we only randomize the order of cooking
temperature within a pulp preparation

This design is known as split-plot design where each replicate (block)
is divided into three whole plots (pulp preparation) and each whole
plot is divided into four subplots (cooking temperature)

Since the whole plot treatments are confounded with whole plot
where as subplots are not confounded, so treatment of interest best
to assign into subplots, if possible
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14.4 Split-plot design
Split-plot design can be viewed as two experiments combined or
superimposed on each other

One experiment has the whole plot factor applied to the large
experimental units (factor whose level is hard to change) and the
other experiment has the subplot factor applied to the smaller units
(factor whose level is easy to change)

In general split-plot within a whole plot will be more similar than split
plots in different whole plots.

Within whole plot, comparisons will generally be more precise than
between whole plot comparisons, i.e. estimates of 𝐵 and 𝐴𝐵 will be
more precise compared to the estimates of 𝐴
If the levels of all factors are easy to change, split-plot designs are
recommended only when there is a considerable less interest in one or
more of the treatment factors
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Analysis of Split-plot design

In the statistical analysis of split-plot designs, we must take into
account the presence of two different sizes of experimental units used
to test the effect of whole plot treatment and split-plot treatment.

Factor 𝐴 effects are estimated using the whole plots and factor 𝐵 and
the 𝐴 ∗ 𝐵 interaction effects are estimated using the split plots.
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Analysis of Split-plot design

The linear model for the split-plot design is

𝑦𝑖𝑗𝑘 =𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝛾𝑘 + (𝜏𝛾)𝑖𝑘

+ (𝛽𝛾)𝑗𝑘 + (𝜏𝛽𝛾)𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘

⎧{
⎨{⎩

𝑖 = 1, 2, … , 𝑟
𝑗 = 1, 2, … , 𝑎
𝑘 = 1, 2, … , 𝑏

where

𝜏𝑖, 𝛽𝑗, and (𝜏𝛽)𝑖𝑗 represent the whole plot and correspond,
respectively, to replicates, main treatments (factor A), and whole-plot
error ( replicates ×𝐴)
𝛾k, (𝜏𝛾)ik, (𝛽𝛾)jk, and (𝜏𝛽𝛾)ijk represent the subplot and correspond,
respectively, to the subplot treatment (factor 𝐵 ), the replicates ×𝐵
and 𝐴𝐵 interactions, and the subplot error (replicates × AB)
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Analysis of Split-plot design
The expected mean squares for the split-plot design, with replicates
random and main treatments and subplot treatments fixed, are shown
below
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Analysis of Split-plot design
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Analysis of Split-plot design

Note from Table 14.18 that the subplot error (4.24) is less than the
whole-plot error (9.07).

This is the usual case in split-plot designs because the subplots are
generally more homogeneous than the whole plots.

This results in two different error structures for the experiment.

Because the subplot treatments are compared with greater precision, it is
preferable to assign the treatment we are most interested in to the
subplots, if possible.
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Analysis of Split-plot design

The split-plot design has an agricultural heritage, with the whole plots
usually being large areas of land and the subplots being smaller areas of
land within the large areas.

For example, several varieties of a crop could be planted in different fields
(whole plots), one variety to a field. Then each field could be divided into,
say, four subplots, and each subplot could be treated with a different type
of fertilizer.

Here the crop varieties are the main treatments and the different fertilizers
are the subtreatments.
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Analysis of Split-plot design
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