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Section 1

14. Nested and Split-Plot Designs
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14. Nested and Split-Plot Designs

This chapter introduces two important types of experimental designs, the
nested design and the split-plot design.

Both of these designs find reasonably widespread application in the
industrial use of designed experiments.

They also frequently involve one or more random factors, and so some of
the concepts introduced in Chapter 13 will find application here.
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Subsection 1

14.1 The Two-Stage Nested Design
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14.1 The Two-Stage Nested Design

@ In a nested design, the levels of one factor (B) is similar to but not
identical to each other at different levels of another factor (A)

@ Consider a company that purchases material from three suppliers

» The material comes in batches
» Is the purity of the material uniform?

@ Experimental design

» Select four batches at random from each supplier
» Make three purity determinations from each batch
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14.1 The Two-Stage Nested Design

Suppliers

Batches
Ym  Yizn Y Y Yo Yo Yoz Yom Yan Va1 Y3z Yam
Observations Yz Yz Yz Y Y212 Va2 Y232 Yaaz Y312 Va2 Y3z Yax
Ynz Y2z Vizz Yias Y13 Yooz Y23z Yoas3 Y313 Va3 Y3z Yaas

m FIGURE 14.1 A two-stage nested design

Suppliers

Batches

m FIGURE 14.2 Alternate layout for the two-stage nested design
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14.1 The Two-Stage Nested Design

o If this were a factorial, then batch 1 would always refer to the same
batch, batch 2 would always refer to the same batch, and so on. This
is clearly not the case because the batches from each supplier are
unique for that particular supplier.

@ Sometimes we may not know whether a factor is crossed in a factorial
arrangement or nested. If the levels of the factor can be renumbered
arbitrarily as in Figure 14.2, then the factor is nested.
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Statistical Analysis

@ Statistical model for two-stage nested design

Q“

1,.
1,.
1,.

e
I

Yijek = M + 7+ 5 + €lij)k {

The notation j(7) indicates that the jth level of factor B is nested under
the ith level of factor A

e Factors A and B could be fixed and/or random

@ This is a balanced nested design as equal number of levels of B
within each level of A and equal number of replicates.

@ No interaction
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Statistical Analysis

@ Decomposition of sum of squares

ZZZ yUk ZZZ{ yz] yz)
+ (Yijr — i‘/ij‘)}Q
Z(yijk - ?jij->2
i,k

SSy =SS, + SSpa) + SSp

@ What are the corresponding degrees of freedom and expressions of
mean squares?
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Statistical Analysis

df :abn—1=a—14a(b—1)+ab(n—1)
If the errors are NID (0, 02), we may divide each sum of squares on the
right of the above equation by its degrees of freedom to obtain

independently distributed mean squares such that the ratio of any two
mean squares is distributed as F'.
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Statistical Analysis

The appropriate statistics for testing the effects of factors A and B
depend on whether A and B are fixed or random.

If factors A and B are fixed, we assume that ¥ ;7, = 0 and
St B =0(i=1,2,...,a).

That is, the A treatment effects sum to zero, and the B treatment effects
sum to zero within each level of A.
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Statistical Analysis

If A and B are random, we assume that 7; is NID(0, 02) and By is
2

NID (0,0%).

Mixed models with A fixed and B random are also widely encountered.

The expected mean squares can be determined by a straightforward
application of the rules in Chapter 13.

The expected mean squares for these three situations is given in the next
table.
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Statistical Analysis

Expected Mean Squares in the Two-Stage Nested Design

A Fixed A Fixed A Random

EMS) B Fixed B Random B Random

bn Y 7} Y bn Y, 7} 5
E(MS,) ol + E ! o’ + noj + 2 ! o’ + nol + bno;

a— 1 4 a— 1 B

n 2 2 B
E(MSy.4) o’ + a[bi—lj;” ol + nog ol + noj
EMS;) a? o’ o’

@ If the levels of A and B are fixed,
» Hy:7; =0is tested by MS ,/MSy and
> Hy: B = 0is tested by MSp 4/ MSE

@ If A is a fixed factor and B is random,
> Hy: 7, =0is tested by MS ,/MSp 4 and
> Hy: 03 =0is tested by MSp 4 /MSg

@ Finally, if both A and B are random factors,
> Hy:02=0is tested by MS,/MSp 4 and
> Hy: 03 =0is tested by MSp 4 /MSg
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Statistical Analysis

Analysis of Variance Table for the Two-Stage Nested Design

Source of Variation Sum of Squares Degrees of Freedom Mean Square
A Y 5. =P a1 Ms,

B within A n 25X = v ath — 1) MSy)
Error 22X i — W) ab(n — 1) MSy

Total PPPN abn — 1

Computing formulas for the sums of squares are given below

| & Vv
v 1 .'-2 e
S5 bn [:21 Yio T abn
S ) 1 <
SSpay = n ’:2] ;; \5 " bn ‘:21 Vi

a b n a b
: 1
SSp =2, 2 2)'5‘/:*52 2\5
. a b ) y
SSp =2, E > Vi = o
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Example 14.1

Consider a company that buys raw material in batches from three different
suppliers. The purity of this raw material varies considerably, which causes
problems in manufacturing the finished product. We wish to determine
whether the variability in purity is attributable to differences between the
suppliers. Four batches of raw material are selected at random from each
supplier, and three determinations of purity are made on each batch.

This is, of course, a two-stage nested design. The data, after coding by
subtracting 93, are shown below.
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Example 14.1

m TABLE 14.3
Coded Purity Data for Example 14.1 (Code: y;; = Purity — 93)

Supplier 1 Supplier 2 Supplier 3
Batches 1 2 3 4 1 2 3 4 1 2 3 4
1 -2 -2 1 1 0 -1 0 2 -2 1 3
-1 =3 0 4 =2 4 0 3 4 0 -1 2
0 -4 1 0 -3 2 -2 2 0 2 2 1
Batch totals Vi 0 -9 -1 5 —4 6 -3 5 6 0 2 6
Supplier totals Y. -5 4 14

The sums of squares are computed as follows

a b n 2
523 3 S - L

=1 =1 kel
13)?
= 153.00 — a3) = 148.31
SS, = L i 2 _ i
4T & Yie ™ b
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Example 14.1

a b a
1 2
B(A) n 21 Zl)’,] bn Zlylz
i=l j= i=
= S0P + (9P + (17 + -+ + (2 + O]
—19.75 = 69.92
and
a b n 1 a b
SSg = Z Vi = n 23’3
i=1 j=1 k=1 =1 j=1
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Example 14.1

m TABLE 14.4
Analysis of Variance for the Data in Example 14.1

Sum of Degrees of Mean Expected Mean
Source of Variation Squares Freedom Square Square F, P-Value
Suppliers 15.06 2 7.53 o2+ 302 +627” 0.97 0.42
Batches (within suppliers) 69.92 9 7.77 o2+ 3a§ 2.94 0.02
Error 63.33 24 2.64 o?
Total 148.31 35

@ There is no difference in purity among suppliers, but significant

difference in purity among batches (within suppliers)
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Diagnostic checking

o For the model v, = p1 + 7; + Bj(;) + €, the estimates of
parameters are

B=Y. T =Y — Yo 5]'(1') = Yij. — Yi-

o The fitted model g5, = fi + 7; + By = ¥

o The residuals €, = ;1. — Uijk

@ ANOVA indicates that there is statistically significant batch-to-batch
variability. But, is the variability within batches the same for all

suppliers? The plot of residuals versus supplier can help us answer
this.
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Estimates of Variance Components

For the random effects case, the analysis of variance method can be used
to estimate the variance components 0%, 02, and 03. Applying the
ANOVA method, we obtain

6'2 - MSE
L, MS,—MSp,
o=

bn
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Estimates of Variance Components

Many applications of nested designs involve a mixed model, with the
main factor (A) fixed and the nested factor (B) random. This is the case
for the problem described in Example 14.1, where suppliers (factor A) are
fixed, and batches of raw material (factor B) are random. The effects of
the suppliers may be estimated by

. 5 13 -®
o4 131
14 1329

=Y. 7Y T 9736 36
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Estimates of Variance Components

We estimate the variance components as

52 = MSy =264

52 _ MSpay—MSp 777264 L7
b n B 3 o

From the analysis in Example 14.1 (in Table 14.4), we know that the 7;
does not differ significantly from zero, whereas the variance component 0%
is greater than zero.
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Subsection 2

14.2 The General m-Stage Nested Design
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14.2 The General m-Stage Nested Design

Suppose a foundry wishes to investigate the hardness of two different
formulations of a metal alloy. Three heats of each alloy formulation are
prepared, two ingots are selected at random from each heat for testing,
and two hardness measurements are made on each ingot. In this

experiment, heats are nested under the levels of the factor alloy

formulation, and ingots are nested under the levels of the factor heats.

Thus, this is a three-stage nested design with two replicates.

Alloy
formulation

Heats

Ingots

Y Ynzr Yien Yian Y Yiam Yom  Yazr Yaam  Yazo1 Yaan
Observations

Yz Ynzz Yiziz Y122z Yizz Yisz2 Yomz Yoz Vo212 Yaze2  Yaziz

m FIGURE 14.5 A three-stage nested design
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14.2 The General m-Stage Nested Design

The model for the general three stage nested design is

1=1,2,...,a

j=12,..b

Yigkt = 1T+ Bi) + Vetij) T€mn  t— 19 ¢
[=1,2,....n

For our example,

o 7, is the effect of the ¢th alloy formulation,
° 53'(1) is the effect of the jth heat within the ¢th alloy,

® Yy(ij) is the effect of the kth ingot within the jth heat and 7th alloy,
and

® €(ijky IS the usual NID (0,02) error term.
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Exercise

Given a three-stage nested design
Yijkt = 1+ T + By + Vegg) T €ijia

@ Find degrees of freedom and expressions of expected mean squares for
the following situations:

» All the factors A, B, and C are fixed
» Factors A and B are fixed, and C is random
» Factor A is fixed, and B and C are random
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Exercise

m TABLE 14.9

Expected Mean Squares for a Three-Stage Nested

Design with A and B Fixed and C Random

Model Term Expected Mean Square
) ) ban’.‘t'i2
Ti [ +n0'7 + a—1
cnZEp?.
2 2 J()
ﬂj(,.) 6 +no, + ab=1)
2 2
YiGij) o +n0'y
2
€icijk) o
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Subsection 3

14.3 Designs with Both Nested and Factorial Factors
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14.3 Designs with Both Nested and Factorial Factors

Occasionally in a multifactor experiment, some factors are arranged in a
factorial layout and other factors are nested.

We sometimes call these designs nested—factorial designs. The statistical
analysis of one such design with three factors is illustrated in the following
example.

Md Rasel Biswas Chapter 14 30/ 46



14.3 Designs with Both Nested and Factorial Factors

m TABLE 14.10
Assembly Time Data for Example 14.2

Layout 1 Layout 2
Operator 1 2 3 4 1 2 3 4 Vi,
Fixture 1 22 23 28 25 26 27 28 24 404
24 24 29 23 28 25 25 23
Fixture 2 30 29 30 27 29 30 24 28 447
27 28 32 25 28 27 23 30
Fixture 3 25 24 27 26 27 26 24 28 401
21 22 25 23 25 24 27 27
Operator totals, y,;;. 149 150 171 149 163 159 151 160
Layout totals, Ve 619 633 1252 =y,

1=1,2,3

71=12
Yija = 1+ 7+ B+ Vi) + (78)ij + (TV)inis) + € k=1,2,34

1=1,2
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14.3 Designs with Both Nested and Factorial Factors

Assume that fixtures and layouts are fixed, operators are random — gives a
mixed model (use restricted form)

m TABLE 14.11
Expected Mean Squares for Example 14.2

Model Term Expected Mean Square
, o® + 207, + 827}

B; o? + 607 + 24347

Yk6) o+ 60'3

(zh); o® + 207, + 4ZZ(zh);
@) o + 207,

€ o’
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Subsection 4

14.4 Split-plot design
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14.4 Split-plot design

@ The split-plot is a multifactor experiment where it is not possible to
completely randomize the order of the runs

@ A paper manufacturer is interested in examining the effect of pulp
preparation method and cooking temperature on the tensile
strength of the paper

Three pulp preparation methods

Four different temperatures

Each replicate requires 12 runs

The experimenters want to use three replicates
How many batches of pulp are required?

vvVvyyvwvyy
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14.4 Split-plot design

@ Pulp preparation methods is a hard-to-change factor
Consider an alternate experimental design:
@ In replicate 1: select a pulp preparation method, prepare a batch

@ Divide the batch into four sections or samples, and assign one of the
temperature levels to each
@ Repeat for each pulp preparation method

@ Conduct replicates 2 similarly
© Conduct replicates 3 similarly
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14.4 Split-plot design

Each replicate (sometimes called blocks) has been divided into three
parts, called the whole plots

Pulp preparation methods is the whole plot treatment

Each whole plot has been divided into four subplots or split-plots

@ Temperature is the subplot treatment

Generally, the hard-to-change factor is assigned to the whole plots

@ This design requires only 9 batches of pulp (assuming three replicates)
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14.4 Split-plot design

m TABLE 14.16

The Experiment on the Tensile Strength of Paper

Replicate 1 Replicate 2 Replicate 3
Pulp Preparation Method 1 2 3 1 2 3 1 2 3
Temperature (°F)
200 30 34 29 28 31 31 31 35 32
225 35 41 26 32 36 30 37 40 34
250 37 38 33 40 42 32 41 39 39
275 36 42 36 41 40 40 40 44 45
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14.4 Split-plot design

@ This is not a randomized block design with three levels of pulp
preparation and four levels of cooking temperature (why?)

@ To be a randomized block design the order of the experiments within
a block should be completely randomized which is not the case for
our example where we only randomize the order of cooking
temperature within a pulp preparation

@ This design is known as split-plot design where each replicate (block)
is divided into three whole plots (pulp preparation) and each whole
plot is divided into four subplots (cooking temperature)

@ Since the whole plot treatments are confounded with whole plot
where as subplots are not confounded, so treatment of interest best
to assign into subplots, if possible
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14.4 Split-plot design

@ Split-plot design can be viewed as two experiments combined or
superimposed on each other

@ One experiment has the whole plot factor applied to the large
experimental units (factor whose level is hard to change) and the
other experiment has the subplot factor applied to the smaller units
(factor whose level is easy to change)

@ In general split-plot within a whole plot will be more similar than split
plots in different whole plots.

@ Within whole plot, comparisons will generally be more precise than
between whole plot comparisons, i.e. estimates of B and AB will be
more precise compared to the estimates of A

o If the levels of all factors are easy to change, split-plot designs are
recommended only when there is a considerable less interest in one or
more of the treatment factors
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Analysis of Split-plot design

@ In the statistical analysis of split-plot designs, we must take into
account the presence of two different sizes of experimental units used
to test the effect of whole plot treatment and split-plot treatment.

@ Factor A effects are estimated using the whole plots and factor B and
the A % B interaction effects are estimated using the split plots.
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Analysis of Split-plot design
The linear model for the split-plot design is

Yige =k + 7+ B85+ (78)15 + 76 + (T7) ik

i=1,2,..r
+ Bk + (TBY)iji + € =12, a
k=1,2...b

where

e 7;,/3;, and (Tﬁ)ij represent the whole plot and correspond,
respectively, to replicates, main treatments (factor A), and whole-plot
error ( replicates x A)

® Vi (T7)ikes (B7)jx» and (737)y, represent the subplot and correspond,
respectively, to the subplot treatment (factor B ), the replicates x B
and AB interactions, and the subplot error (replicates x AB)
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Analysis of Split-plot design

The expected mean squares for the split-plot design, with replicates
random and main treatments and subplot treatments fixed, are shown
below

m TABLE 14.17
Expected Mean Squares for Split-Plot Design

Model
Term Expected Mean Square
2 0% + abo?
rb):.ﬂj2
Whole plot B; o2+ bo'zﬂ +
i a—1
2 2
(zh); 6’ +bo’ 5
raZy?
2 2 k
Y 4 +aa,7+(b_1)
(G o +ac?,
., rZZ(fy ]Zk
Subplot (ﬁy)jk c°+ Oy + m
(Tﬂ}')ijk o’ + azﬂy
EGivn 62 (not estimable)
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Analysis of Split-plot design

m TABLE 14.18

Analysis of Variance for the Split-Plot Design Using the Tensile Strength Data from Table 14.14

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F, P-Value
Replicates 77.55 2 38.78
Preparation method (4) 128.39 2 64.20 7.08 0.05
‘Whole-plot error (replicates XA) 36.28 4 9.07
Temperature (B) 434.08 3 144.69 41.94 <0.01
Replicates x B 20.67 6 345
AB 7517 6 12.53 2.96 0.05
Subplot error (replicates X AB) 50.83 12 4.24
Total 822.97 35
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Analysis of Split-plot design

Note from Table 14.18 that the subplot error (4.24) is less than the
whole-plot error (9.07).

This is the usual case in split-plot designs because the subplots are
generally more homogeneous than the whole plots.

This results in two different error structures for the experiment.

Because the subplot treatments are compared with greater precision, it is

preferable to assign the treatment we are most interested in to the
subplots, if possible.
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Analysis of Split-plot design

The split-plot design has an agricultural heritage, with the whole plots
usually being large areas of land and the subplots being smaller areas of
land within the large areas.

For example, several varieties of a crop could be planted in different fields
(whole plots), one variety to a field. Then each field could be divided into,
say, four subplots, and each subplot could be treated with a different type
of fertilizer.

Here the crop varieties are the main treatments and the different fertilizers
are the subtreatments.
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Analysis of Split-plot design

m TABLE 14.20
Analysis of the Split-Plot Design in Table 14.16 as a CRD

Summary of Fit

RSquare 0.7748
RSquare Adj 0.671583
Root Mean Square Error 2.778889
Mean of Response 36.02778
Observations (or Sum Wgts) 36

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 11 637.63889 57.9672 7.5065
Error 24 185.33333 7.7222

Prob > F
C. Total 35 82297222 <.0001*
Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob >F
Method 2 2 128.38889 8.3129  0.0018*
Temp 3 3 434.08333 18.7374  <.0001
Temp*Method 6 6 75.16667 1.6223  0.1843
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